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Preface

This book has been written to provide a self-contained text on structural
dynamics for use in courses offered to seniors or first-year graduate
students in civil engineering. The material is based on the author’s
notes for such a eourse given at MIT during the past few years. It is
presumed that the student has completed the normal undergraduate
work i applied mechanics, mathematics, and structural engineering.
The emphasis in this text is on the practical analysis and design of real
structures rather than on the mathematical techniques of dynamic
analysis. Throughout the book examples are given to illustrate applica-
tion of the theory to actual structural problems. Much of the material
has been drawn from the author’s experience as a consulting engineer.
With this emphasis the book should be useful to practicing engineers, as
well as to students whose objective is to become structural designers.
In the author’s opinion, structural dynamics is too often taught as a

~ course in advanced mathematics for engineers. For some students this
-approach makes the subject unnecessarily difficult. Other students find

the mathematical manipulation so intriguing that they fail to develop the
physical understanding essential for good design. In this text the author
has avoided mathematical complexities, which, although they may be
useful in advanced research, are unnecessary for most design purposes.

Chapters 1 and 2, in some respects, are a review of the dynamics
normally taught in applied mechanics. In addition, however, two other
purposes are served: (1) the basic theory is related to actual structures;
and (2) numerical analysis, which is not normally covered in applied
mechanies, is introduced. The order of presentation, i.e., numerical
analysis before clesed solution, is somewhat unorthodox. The author
believes, as & result of his teaching experience, that this order is prefer-
able, because numerical analysis executed by hand develops a physieal
“feel” for dynamic behavior much more rapidly than does the solution of
differential equations.

Chapters 3 and 4 are, perhaps, the heart of the book, since they contain
the theory of analysis for multidegree systems. The author has chosen
not to use matrix notation, which is currently so popular, because in his
opinion it is pedagogically unwise to do so at this introductory level.
For those teachers who prefer matrix formulation, the Appendix may be
helpful. Chapter 4 contains considerable material on beams of various
types, because this is believed to be particularly important to structural
engineers.
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Chapter 5 is devoted to approximate methods of design, which are
developed on the basis of the theory presented in earlier chapters.
Because many dynamic problems in eivil engineering involve uncertain
loading conditions, these methods are often more appropriate than the
more precise but time-consuming procedures.

Chapters 6, 7, and 8 contain applications of the theory to some impor-
tant types of structural problems. These treatments are ineomplete, but
they are believed to be sufficiently thorough to provide a sound introdue-
tion to the subjects.

The author wishes to acknowledge with gratitude the assistance of his
wife, Margaret C. Biggs, who not only typed thé’ manuseript, but pro-
vided encouragement throughout the writing of this book. Daniel
Beltran-Maldonado was extremely helpful in preparing the figures and
proofreading the manuscript.

The author is particularly indebted to his teacher and colleague Prof.
Charles H. Norris for instruction and inspiration over an extended period
of time.

John M. Biggs
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Introduction

.

The subject of this text is the analysis and design of structures subjected
to dynaric loads, ie., loads which vary with time. Although the
majority of civil-engineering structures can properly be designed as
though the loads were static, there are some important exceptions, and it
is obviously imperative that the designer be able to distinguish between
static and dynamie loads.

In fact, no structural loads (with the possible exception of dead load)
are really static, since they must be applied to the structure in some
manner, and this involves a time variation of force. It is obvious, how-
ever, that if the magnitude of force varies slowly enough, it will have no
dynamic effect and can be treated as static. “Slowly enough” is not
definite, and apparently the question of whether or not a load is dynamic
is a relative matter. It turns out that the natural period of the structure
is the significant parameter, and if the load varies slowly relative to this
period, it may be considered to be static. The natural period, loosely
defined, is the time required for the structure to go through one eyele of
free vibration, i.e., vibration after the force causing the motion has been
removed or has ceased to vary.

The interest in structural design for dynamic loads has been increasing
steadily over the years. This is in part due to advancing technology,
which has made possible more accurate design. It is also due to the fact
that more daring structures (larger, lighter, etc.) are being attempted,
and these are more susceptive to dynamic effects because they are gen-
erally more flexible and have longer natural periods. Examples of situa-
tions in which dynamic loading must be considered include (1) structures
subjected to alternating forces caused by oscillating machinery, (2) struc-
tures which support moving loads such as bridges, (3) structures subjected
to suddenly applied forces such as blast pressure or wind gust, and
(4) cases where the supports of the structure move, e.g., & building during
an earthquake,

The basic principles of structural analysis are of course not invalidated
by the fact that the load is dynamic. The same relationships between
deflection and stress apply under both dynamic and static conditions.
Dynamie analysis consists primarily of the determination of the time
variation of deflection, from which stresses can be directly computed.
Since the natural period depends upon the mass and stiffness of the strue-
ture, these two quantities are of perhaps greater importance in dynamic
analysis.

ix



x Introduction

In this text considerable attention is given to the inelastic behavior of
structures, i.e., behavior beyond the elastic limit. This is particularly
important in dynamic design because it is often impractical, or at least
uneconomical, to design the structure so as to remain completely clastic.
The energy absorption which results from the plastic deformation of the
material permits a much lighter structure than would be required if all
energy had to be absorbed by elastic strain. o

Chapters 1 and 2, which deal with simple dynamic systems, contain the
more elementary theory of structural dynamies. In Chapters 3 and 4
this theory is extended to more complex structural systems. Chapter 5
is a presentation of approximate design procedures, which are often more
suitable for practical purposes than direct application of the theory.
Finally, Chapters 6, 7, and 8 contain applications of the material in pre-
ceding chapters to practical problems of importance.
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Numericc}l Analysis
of Simple Systems

1.1 Introduction

The determination of the dynamic response of simple systems using
numerical procedures is discussed in this chapter. The more tradi-
tional rigorous methods are introduced in Chap. 2. This order of pre-
sentation is followed because numerical analysis, rather than rigorous
solution, is believed to be the most general and yet straightforward
approach possible and the best for introductory purposes. Only basic
principles of physics and the most elementary mathematics are used.
Thus the reader should be able to concentrate on the physical phenomena
involved rather than on the mathematical techniques employed. It
is hoped that this emphasis will help develop a physical “feel,” or intui-
tion, for dynamic response, which is necessary for successful analysis of
more complicated dynamic problems. The reader is urged to keep this
objective in mind during his study of the following sections.

Numerical analysis, that is, solution of the differential equations of
motion by arithmetic procedures, is a much more general attack on the
problem than rigorous, or elosed, solution, because the latter is possible
only when the loading and the resistance functions can be expressed in
relatively simple mathematical terms. For the type of problems in
which we are interested, this is a severe restriction, and thus the rigorous
approach is obviously of limited usefulness.

The availability of electronic computers has accelerated the adoption

1
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FIGURE L.1 Structures idealized as spring-mass systems.

of numerical methods by struetural engineers. Solutions to many com-
plex dynamic problems which were impossible in earlier times ean now
be obtained with relative eage. Although computer programming is
not discussed in this text and the procedures are illustrated by hand
calculations, it is expected that, in practice, many of these computations
would be done electronically.

The following sections dea! with systems consisting of combinations
of springs and masses. It should be emphasized that these are not
merely academic exercises, but rather that the system idealized in this
manner is & convenient representation of an actual structure. For
example, in Fig. 1.1a, the weight W, supported by a beam and subjected
to a dynamic load, may often be repregented by the simple mass-spring
system shown. The same is true of the rigid-frame structure shown in
Fig. 1.15, where the mass is distributed along the girder and only hori-
zontal motions are considered. In order for the idealized system to
perform in the same way as the actual structure, it is only necessary to
make a proper selection of the system parameters. For example, the
spring constant k can be determined from the properties of the beam or
frame since it is merely the ratio of force to deflection. In the cases
shown, the weight, or mass, of the idealized system is the same as that
of the actual structure since the weight of the structural members is
assumed to be negligible. In other cases this may not be true and a
factor must be applied to obtain the equivalent mass for the idealized
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system. Such a factor would be necessary if the mass were distributed
over the structure—a situation which will be discussed in later chapters.
The load-time relationship, or load funetion, is usually the same for the
two systems, although the magnitude of the load may differ. The idesl
spring-mass system is selected such that the deflection of the mass is the
same as at some point of significance on the structure, for example, the
midspan of the beam. The important point is that an idealized system
whieh behaves timewise in exactly the same fashion as the actual struc-
ture can be constructed and then analyzed with relative ease.

1.2 One-degree Elastic Systems

A one-degree system is defined as one in which only one type of motion
is possible, or in other words, the position of the system at any instant
can be defined in terms of a single coordinate. Such a system is shown
in Fig. 1.2a, where the mass can move in a vertical direction only and
all the mass in the system deflects by the same amount {the spring is
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assumed massless). As an example of dynamic analysis, let us determine
the motion of this mass resulting from the application of a time-varying
force.

a. Formulation of the Problem

The first step is to isolate the mass as shown in Fig. 1.2p, To this
mass we apply the external forces, in this case the applied force F(t)
and the spring force ky. It is assumed here that the spring is linear,
ie., that the force in the spring is always equal o the spring constant
times the displacement. Note that the weight, or gravity force, does
not appear in the figure. This implies that the displacement ¥ i8 meas-
ured from the neutral position, in other words, the static position which
the mass would take if only the force of gravity were acting,

Having isolated the mass, we may write the equation of motion simply
by applying the elementary formula # = . a. Fis, of course, the net,
or algebraie, sum of the forces acting on the mass, and the positive direc-
tion of force is the same as that for displacement or acceleration. Thus
the equation of motion for this system ig*

Ft) — ky = My (1.1
This differential equation may be solved to determine the variation of
displacement with time once the loading funetion, the initial conditions,
and the other parameters are known.

An alternative and very convenient way of writing the equation of
motion is by the use of D’Alembert’s principle of dynamic equslibrium.
This method is illustrated in Fig. 1.2¢, where an additional imaginary
force is applied to the mass. This is the tnertia force, and is equal to the
product of the mass and the acceleration. Note that it must always be
applied in the direction of negative acceleration, or opposite to positive
displacement. Having added this force, we may treat the situation

shown in Fig. 1.2 exactly as a problem in static equilibrium. The
equilibrium equation is

F(t) — ky — My = 0 ' (1.2)

It is seen that this approach results in exactly the same equation as that
previously obtained. In general, the second approach given is more
convenient, espeeially when distributed masses are involved.

b. Numerical Integration
Before considering a specific example we shall discuss the process of
numerical integration in general terms. This is a procedure by which

* Throughout this text ¥ and # will be used to designate the first and gecond

derivatives of displacement with respect to time, or in other words, the velocity and
acceleration.
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lumped-impulse procedure. (5)

the differential equation of motion is solved step by step, starting at
zero time, when the displacement and velocity are presumably known.
The time seale is divided into discrete intervals, and one progresses by
successively extrapolating the displacement from one time station to
the next. There are many such methods available, but in keeping with
the policy stated for this chapter, only one of the more simple versions
will be presented here. This might be called the constant-velocity, or
lumped-impuise, procedure.

Suppose an analysis for the determination of the displacement-time
variation for a dynamic system was in progress as indicated in Fig. 1.3.
Suppose, further, that the displacements ¥ at time station s and yl-V
at the preceding time station s — 1 had been previously determined.
The accelerntion 4 at time station s can then be determined using the
equation of motion. The problem is to determine the next displacement,
¥+, by exirapolation. This could be done by the following self-evident
formula:

Yoy = o 4 og AL (1.3)

where g.. is the average velocity between time stations s and s + 1, and
At is the time interval between stations. The average velocity may be
expressed by the following approximate formula:

{8) _ g4(e—1)
oy =L " ¥ L g (1.4)
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where the first term is the average velocity in the time interval between
§ — 1 and s, and the second term is the increase in the velocity between
the two time intervals, assuming that §“ is an average acceleration
throughout that time period. The assumption stated is equivalent to
approximating the acceleration curve by & series of straight lines as shown
m Fig. 1.3b and, in addition, replacing the area under these lines by a
series of pulses concentrated at the time stations. Thus the shaded area
represents an impulse applied at station s which equals the change in
average velocity between the two adjacent time intervals. Substituting
Eq. (1.4) into Eq. (1.3), the following recurrence formula is obtained:

y(a+1J = 2y(a) — y(a—l) + g(e) (At)z (15)

With this equation one is able to extrapolate to find the displacement
at the next time station. Note, from Eq. (1.1), that ™ may be deter-
mined since it depends only upon the displacement ¥, which was
previously obtained, and F(t), which is known.

The recurrence formula. given by Eq. (1.5) is obviously approximate,
but it gives sufficiently accurate results provided that the time interval
At is taken small in relation to the variations in acceleration. In fact,
as Af-— 0, the solution becomes exact, although the number of computa-
tions obviously increases as At is reduced, thereby increasing the number
of time intervals involved. In general, it has been found that results
sufficiently accurate for practical purposes ean be obtained if the time
interval is taken no larger than one-tenth of the natural period of the
system. 'This point will be discussed in more detail in later sections.
Many other recurrence formulas are available for use. Some of these
formulas permit larger time intervals but require more elaborate compu-
tations in each step. When problems of stability or convergence are
encountered, more accurate recurrence formulas may be necessary.
These are beyond the scope of the present discussion, but are covered
in Bec. 1.6. The author has found the formula presented, Eq. (1.5),
to be adequate for most problems in structural dynamics.

Using the recurrence formula, the analyst simply begins at time equals
zero and proceeds step by step to determine the displacements at the
time stations selected. It is necessary, however, to use a special pro-
cedure in the first time interval because, at ¢ = 0, no value of e i
available. Two different procedures may be used. First, the accelera-
tion may be assumed to vary linearly up to the first time station, in
which case the displacement at that time is given by the following:*

¥y = 14(25© + ) (af)? (1.6)

* Equations (1.8) and (1.7} may be derived by evaluating y = [ [y dt dt.
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Second, the acceleration may be assumed constant during the first time
interval and equal to the initial value. For the latter assumption the
following equation applies: :

¥y = 149 (an® . (1.7)

In either case, having established y™, the analyst then proceeds in the
normal way, using Bq. (1.5). Note that Eq. (1.6) must be solved by
trial and error since ¥ depends upon ¥V, However, Eq. (1.6) must be
used if there is zero force (and hence zero acceleration) at zero time, for
in no other way can y© be determined. If the acceleration at ¢ — 0is
not zero, Kq. (1.7), which does not require iteration, may be used without
appreciable error, provided that the force does not change greatly in
the first interval. This method of numerical analysis is illustrated in
the example which follows.

The numerical procedure outlined above will at first seem tedious.
However, in the very common cases where no closed solutions are possi-
ble, there is no alternative. If one is dealing with a one-degree system,
the computations can, with a little practice, be done very quickly. When
the system is more complicated, computers are normally used and the
length of the calculations is not a serious problem.

c. Example

To illustrate the procedures discussed above, consider the spring-mass
system shown in Fig. 1.4a, which is subjected to the load-time function
shown in Fig. 1.4b. It is desired to determine the variation of displace-
ment with time, starting with the system at rest at ¢ = 0. Substituting
into Eq. (1.1) and being careful to keep the units consistent, the equation

of motion is written as follows:

64.4
or ¥ = LF(t) — 1000y (1.8)

Thus knowing the load and the displacement at any time enables one to
compute acceleration at that time. .
The next step is to select a time interval for the numerical Integration.
As mentioned above, this should not be greater than one-tenth of the
natural period of the system. The natural period T of a one-degree

system is given by
T — 2r [ (L.9)
kg

which, in this example, is 0.198 sec. The natural frequency f is the
inverse of the natural period, or 5.04 cps. The natural circular frequency
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i, sec FIGURE 1.4 Example. (a) Spring-mass
() system; (b) load-time function.

w is 2xf, or 31.6 rad/sec. Natural periods and frequencies are discussed
more fully in later chapters.

One-tenth of the natural period is approximately 0.02 see, and this
value will be used in the computation. However, a second eriterion
must be considered when selecting the time interval: the interval should
be small enough to represent properly the variation of load with time.
In this example it will be noted that the time stations (At = 0.02) occur
at the sudden breaks in the load function and, furthermore, that the
interval is small enough so that points at this spacing accurately repre-
sent the function (Fig. 1.4b). Therefore the time interval selected is
satisfactory.

The numerical integration for the example problem is shown in Table
L.1. Note that, in the first time interval, Eq. (1.7) is used and, in
the following intervals, Eq. (1.5) is employed: Since Eq. (1.8) gives
gt = 0) = 25, Eq. (L7) yields y(t = 0.02) = 14(25)(0.02)% = 0.0050.
Using the latter value in Eq. (1.8) provides §(t = 0.02) = 25, and there-
fore y(t = 0.04) = 2(0.0050) — 0 + 25(0.02)? = 0.0200 by Eq. (1.5).
The calculations then eontinue in identical manner. The result of the
complete calculation is plotted in Fig. 1.5, where displacement versus
time is shown. The ordinate also represents the time variation of the
spring foree if the displacements are multiplied by the spring constant k.
To assist in the interpretation of the result, the hypothetical displace-

Numerical Analysis of Simple Systems

Table 1.1 Numerical Integration; Undamped Elastic One-degree System

(Fig. 1.4)
¢ 14F ) 1000y By 3‘(’1 5 J (aty? et 5
2 . (2. . {1,

sec ft/sec? Jt/sec t/sect jt P
0.0 25 0 25.0 0.0100 0
0.02 30 5.0 25.0 0.0100 0.0050*
.04 35 20.0 15.0 0. 0060 0. 0200
.06 40 41.0 -1.0 —0.0004 0.0410
0.08 45 61.6 ~16.6 —0.0066 0.0616
0.10 50 75.6 ~25.6 —0.0102 0.0756
0.12 37.5 79.4 —41.9 —0.0168 0.0794
0.14 25 66.4 ~4]1 .4 —0.0166 0.0664
0.16 25 36.8 —11.8 —0.0047 0.0368
0.18 25 2.5 22.5 0. 0090 0.0025
0.20 25 —-22.8 47.8 0.0191 —0.0228
0,22 25 —20.0 54.0 0.0216 -—0.0290
0.24 25 ~13.6 38.6 (.0154 —0.0136
0.26 - 25 17.2 7.8 0.0031 0.0172
0.28 25 51.1 —26.1 —0.0104 0.0511
0.30 25 74.6 —49.6 —0.0198 0.0746
0.32 25 78.8 —53.3 -0.0123 0.0783
0.34 EE s e 0.0607

*Equation (1.7).

ment corresponding to the static application of the load at any instant
is also plotted. The maximum displacement which occurs at 0.12 see
corresponds to a spring force of 159 Ib, which is 1.59 times the maximum
external load. BSubsequent peaks are somewhat smaller and correspond
to a spring force of 157 1b. 'The latter peak value would remain constant
indefinitely since we have not included damping in the present example.
The time interval between successive positive (or negative) peaks is
exactly equal to the natural period of the system. . After the load becomes
constant at 0.14 sec, the spring forece varies in sinusoidal fashion, the
positive and negative peaks being equidistant above and below the value
of the external load.

The student is urged to study the computation shown in Table 1.1
carefully and to make similar computations on his own. It would be
advisable to plot the displacement as the computations proceed. This
exercise has two advantages: first, errors in arithmetic are quickly dis-
covered; and second, it helps to develop an understanding of dynamic
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FIGURE 1.6 Example. Response of system shown in Fig. 1.4.

behavior. Although somewhat tedious, the effort is well worthwhile,
since this intuitive understanding will be invaluable in later chapters.

Lest it be forgotten that the system analyzed in the previous para-
graphs could represent an actual structure, consider the frame shown
in Fig. 1.6a. This is a steel rigid frame to which is applied a dynamie
force at the upper level. It is desired to determine the dynamic deflec-
tion of the top of the frame in the horizontal direction. Two assumptions
will be made: first, the weights of the columns and walls are negligible;
and second, the girder is sufficiently rigid to prevent significant rotation
at the tops of the columns. These assumptions are not necessary, but
will serve to simplify the problem and, in fact, are essentially correct
for many actual frames of this type.

The parameters of the idealized system shown in Fig. 1.6b may be
easily computed as follows:

W = 1000 X 30 = 30,000 1b

_ 128@2I) 12 X 30 X 108 X 112.8
k= R (20)® x 144 (1.10)
35,200 1b/ft

The spring constant k is simply equal to the inverse of the deflection
at the top of the frame due to a unit horizontal load, and the equation
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FIGURE 1.6 Rigid frame represented by one-degree systetn.

“employed above may be easily verified by simple elastic analysis. Hav-

ing these parameters, the analyst would then proceed to determine the
dynamic displacements for a given load function, using the same technique
a8 in the previous example. These displacements would be equal to
the actual horizontal deflections at the top of the frame. The spring
force computed for the ideal system would at all times be equal to the
total shear in the two columns, and the maximum column bending
moment would be given by 6EIy/h%. Thus the dynamic stresses at
any time could be easily determined.

1.3 Two-degree Elastic Systems

In this section the analysis of two-degree systems will be discussed, apply-
ing the same basic concepts as those used in the previous section for
one-degree systems. A two-degree system is defined as one in which
two separate types of motion are possible, or in other words, the con-
figuration of the system at any time is completely specified by exactly
two parameters, or displacements. Such a system is shown in Fig. 1.7a,
where the parameters defining the motion are the displacements of the
two masses, namely, y; and y.. The constants of the system are the
two masses M, and M, and the two spring constants k, and k;. In
addition, the external forces F,(t) and Fy(t), which vary with time, must
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a_lso be known., .It is our purpose in this section to determine the varia-
tlon_ of the two displacements with time for a given set of external forces
having a prescribed time variation.

a. Formaulation of the Problem

The equations of motion may be written by applying the concept of
dynamic equilibrium as discussed in the previous section. For this
purpose the two masses are isolated, as indicated in Fig. 1.76. To each
mass one must apply all the forces acting. These include (1) the internal
spring forces, (2) the externally applied forces, and (3) the inertia forces.
Note that the signs must always be consistent. In this example the
displacements y, and y, have been taken as positive when downward.
'I_‘hus the directions of the spring forces shown on the sketch are con-
m_stent with the expressions written for these forces and the positive
directions of the displacements. The inertia forces are, of course, always
takt?n as positive in a direction opposite to positive displacement.

Simply by writing the equation of equilibrium for each of the two

masses shown in Fig. 1.76 we arrive at the following two differential
equations of motion:

Mg 4+ kg ~ Koy, — 7)) -—IF1(E) =0 L11
Mzﬂ2+k2(yz'—y1)'"ﬁ'z(t)=0 (L11)

'Ijhese two equations may be solved simultaneously to determine the
time variation of the two displacements.

The numerical integration of the two differential equations of motion
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is carried out in exactly the same way as for a one-degree system, except
that in this case two integrations, one for each equation, must be carried
out simulteneously. This presents no particular difficulty since the
extrapolation process yields both displacements at a particular time
on the basis of the displacements at preceding time intervals. Thus
the two accelerations can be determined by the application of the two
equations (1.11) independently. This procedure is illustrated by the
example which follows.

b. Example

As a numerical example, values are assigned to the constants of the
Iumped-mass two-degree system shown in Fig. 1.7. It is desired to
determine the variation of the two displacements, starting at rest at
¢t = 0 and continuing throughout whatever interval of time may be of
interest. The following values are assumed:

2 lb-sec?/ft ky = 4000 1b/ft Fity =0
1 Ib-sec?/ft k2 = 2000 Ib/ft Fo(t) = 200 Ib t>0

Note that zero force is applied to the mass M, and that the force applied
to the mass M, is suddenly applied at ¢ = 0 and remains constant indefi-
nitely thereafter.

If these values are inserted into Egs. (1.11), expressions for the two
accelerations may be written as follows:

% = 1000(y: — y1) — 2000y,
G2 = 200 — 2000(y, — y1)

Only these two equations and the recurrence formula, Eq. (L.5), are
required for the analysis. The recurrence formula applies to each of
the two displacements independently.

As explained previously, a proper time interval for the numerical
integration depends upon the natural period of the system. In this
example there are two natural periods, since we are dealing with a two-
degree system. For these particular parameters, the two natural periods
are 0.20 and 0.10 sec. The former is the natural period of the first, or
fundamental, mode of vibration, and the latter is the natural period of
the second mode. The determination of natural periods for two-degree
systems is discussed in Sec. 3.2, and will not be considered here. In
order for the numerical analysis to yield accurate resuits, the time
interval should not be larger than one-tenth of the smaller natural
period. Thus, in this example, a time interval At of 0.01 sec will be used.

The computations for this analysis are arranged in tabular form for
convenience in Table 1.2. At each time station the two displacements
have been determined by the preceding computations. The procedure

5
[

(1.12)
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Table 1.2 Numerical Integration; Undamped Elastic Two-degree System
(Fig. 1.7)

¢ — i 7 t n - v in (&)t b -
W Il B B (110 U B 1) oo~ v g, (118 n P R | L
St/ sech St Stfsec? ft

4 0 0 0 g 0 0 200 0.0200{ ¢ 0

0.01 0 10 19 0.0010] 0.0002* 20 180 0.0180| 0.01001] 0.0008
0.02 3 BY 3¢ 0.0034] 0.0014 73 127 0.0127| 0.0380 | 0.0868
coz| 12 73 61 0.0061| 0.0060 us 55 0.0085| 0.0787 | 0.0727
004 33 108 75 0.0075| 0.0167 218 —16 [ =0.0018] 0.12490 | 0.1082
0.05] 70 135 85 0.0065} 0.0349 268 —60 | —0.0069| 0.1695 | 0.1348
0.06 | 119 148 29 0.0029] 0.0508 295 ~85 | —0.0005] 0.2072 | 0.1476
0.07 ] 114 148 —2 | —0.0028| 0.0872 208 =88 1 —0.0006| 0,2354 | 0.1482
0.08 | 224 142 —82 | —0.0082( 0.1122 284 —B4 | —0.0084| 0.3640 | 0.1418
0.00 | 258 188 —123 | —0.0123] 0.12%0 270 =70 | —0.0070| 0.26842 | 0.2852
0.10 | 287 134 —133 | —o0.0i23| o0.1335 268 —68 | —0.0088| 0.2674 | 0.1330
0,11 249 1% =10 | —0.0116] 0. 1247 278 =7 | ~0.0078] 0.2638 | 0.1391
0.13| 210 147 —63 | —0.0063] 0.1040 205 -85 | —0.0095| 0.2524 | 0.1475
0.13] 158 15 -5 | —0.0005 0.0788 306 —105 [ —-0.0105; ©0.2915 | 0.1537
0.14| 104 148 4" 0.0044| 0.0632 208 —06 | -0.0008| 0.2001 | 0.1470
0.15] 80 120 69 0.0060{ 0.0300 258 —58 | —0.0088] ©.1581 | 0.1201
0.16| 20 [ 89 0.0060| 0.0147 105 5 0.0006| 0.1123 | 0.0978
0.17| 13 )] 47 0.0047] 0.0063 ns 81 0.0081[ ©.0880 | 0.0507
0.18 5 25 20 0.0020| ©.0028 50 150 0.0150| 0.0878 | 0.0262
0.19 2 [ 2 0.0002| 0.0009 7 193 0.0193| 0.0046 | 0.0057
0.20 —1 1 2 0.0002 | —0.0008 3 197 0.0197| 0.0007 | G.0013
0.2t ... R OO D —0.0019 I T B 0.0185 | 0.0i84

Ty o= (1 at ¢ = 0,00) (ADS,
Ty = K(hatt = 0) (ans,

is therefore as follows: (1) the two accelerations are computed by Eqs.
(1.12); and (2) the displacements at the next time station are computed

using the recurrence formula. For further illustration the detailed
computations leading to the displacements at ¢ — 0.05 are given below:

At t = 0.03,

At i = 0_0:1 = 00060, 2 ~ 0.0787 previously determined
n = 0.0167, y, = 0.1249

At = 0.04,

1 = 1000(0.1249 — 0.0167) — 2000(0.0167) = 75
g2 = 200 — 2000(0.1249 — 0.0167) = —16

At t = 0.05,

¥1 = 2 X 0.0167 — 0.0060 + 75(0.01)2 = 0.0349
V2 = 2 X 0.1249 — 0.0787 — 16(0.01)* = 0.1695
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FIGURE 1.8 Example. Response of two-degree system.

All values are, of course, in units of feet and seconds. These computa-
tions are repeated for each time interval in succession.

At the first time station, y. is determined by the special formula (1..7 ),
since the load is applied suddenly at £ = 0. For y; at 1ihe first time
station, Eq. (1.6), with y'® = 0, is used, since the acceleration of mass 1
begins at zero. .

The result of this analysis is plotted in Fig. 1.8, where the displace-
ments are displayed as a function of time., Inspection of such dafia
assists one to become aware of the general characteristics of dynamie

- Tesponse. For example, both displacements y, and y. vary in what

appears to be almost sinusoidal fashion between a minimum of ZEro a.¥1d
some maximum value. Furthermore, the period of this sinusoidal varia-
tion is approximately 0.2 sec, or in other words, the same as the ﬁr.st
natural period of the system. Thus one concludes that the response in
this particular example is primarily in the first mode and that the e-ﬁect
of the second mode is of less significance. On the other hand, the differ-
ence between the two displacements, which is also plotted in Fig. l.s,
distinctly shows the effect of the second mode. The reason for this
bebavior will become more clear when modal analysis of multidegree
systems is discussed in Chap. 3. )
It is also of interest to consider the maximum spring forces which
result from the application of this suddenly applied load. For example,
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FIGURE 1.9 Two-story rigid frame.

the maximum force in spring 1 is 534 ib (Fig. 1.8), which is 2.67 times
the value of the applied external load. The maximum force in spring 2
is 305 b, which is equal to 1.53 times the maximum value of the applied
load. The multipliers given are also the ratios of the maximum dynamie
spring force to the force which would have oceurred had the external
Eload been applied statically. Thus one reaches the conclusion, which
18 generally true, that a suddenly applied force causes considerably
greater stresses in a structure than would the same force applied statically.

Before leaving this subject the reader is reminded that the idealized
system shown in Fig. 1.7 is a representation of an actual structure. For
example, such a structure could be the two-story rigid frame subjected
to horizontal dynamic forees as shown in Fig. 1.9. If it is assumed for
simplicity that the girders are infinitely rigid and that the weight of
the colummns is negligible, the constants of the idealized spring-mass
system may be easily determined as follows:

W1 = 2000 X 40 = 80,000 Ib

Wa = 1000 X 40 = 40,000 1b
12E(21) _ 12(30 X 10% X 112.8
by = 2220 =
) 3 A5 %14 83,500 b/ft
12(30 X 10%) x 112.8
k = =
. GOy X T4 35,200 Ib/ft

The two lumped weights {or masses) are simply equal to the total weights
at the two floor levels. The spring constant in one of the stories is
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merely the sum of the two column shears developed by a unit relative
displacement in that story. The formula given above may be easily
derived by simple elastic analysis. Having the values of these system
parameters and given the two load-time functions, we could determine
the horizontal displacements of the two floors by exactly the same pro-
cedure as was used for the lumped-mass system of the example. The
spring-mass system shown in Fig. 1.9 is, of course, exactly equivalent
to that in Fig. 1.7.

1.4 One-degree Elastic System with Damping

This section contains a very brief discussion of the effect of damping
in structural dynamic systems and methods for ineluding this effect
in numerical analysis. The discussion is extended in later chapters.

a. Damping Characteristics

All struetural dynamie systems contain damping to some degree, but
as will be shown below, the effect may not be significant if the load dura-
tion is short and only the maximum dynamic response is of interest.
On the other hand, if a continuing state of vibration is being investigated,
damping msay be of primary importance. In fact, if enough damping
is present, vibration may be completely eliminated.

Damping in structures may be of several different forms. It is in
part due to the internal molecular friction of the material. It is also
due to the loss of energy associated with the slippage of structural con-
nections either between members or between the structure and the sup-
ports. In some cases it may be due to the resistance to motion provided
by air or other fluids surrounding the structure. In any case, the effect
s one of forces opposing the motion, and hence the amplitude of the
response is decreased.

It is generally believed that, for purposes of analysis, structural damp-
ing may be assumed to be of the viscous type; i.e., the damping force i&
opposite buf, proportional to the velocity. Although other forms of
damping are usually present, this assumption provides reasonable
results. Accordingly, the damping force applied to a lumped mass
may be expressed by the following:

Damping force = —cy

where c is a numerical constant, and 7 is the velocity of that mass.
The negative sign indicates that the force is always opposed to the
direction of the velocity. The magnitude of the coefficient ¢ is extremely
difficult to determine, and for this reason it is convenient to introduce
the concept of critical damping. This is the amount of damping that
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would completely eliminate vibration and, for a one-degree system, is
given by the following: L
Cer = 2 kM (1.13)

where & and M are the stiffness and mass of the system. The concept
of eritical damping is useful, since it is often easier to specifly the amount
of damping a8 a certain percentage of critical than it is to arrive at the
numerical value for the coefficient c. The derivation of Eq. (1.13) and
further discussion of this subject are contained in Sec. 2.4.

b. Formulation of the Problem

Consider the simple one-degree system shown in Fig. 1.10a and the
state of dynamic equilibrium shown in Fig. 1.10b. This system differs
from those in the previous examples only in the inelusion of a damping
force. 1In Fig. 1.10b the damping force is shown upward, or opposite
to the direction of positive velocity. Using the concept of dynamic
equilibrium, we write the equation of motion as follows:

ky + Mg+ cy — F(5) =0 (1.14)

Thus the equation of motion contains one additional term, and involves
velocity, besides acceleration and displacement.

c. Example

To illustrate the effect of damping the analysis of See. 1.2¢ will be
repeated, but in this instance 10 percent of eritical damping will be
assumed. The parameters of the system and the load-time function
are given in Fig. 1.4. The damping coefficient is equal to one-tenth
of the eritical coefficient as given by Eq. (1.13):

— SR ib
¢=01X2vVkM = 0.2/2000 X 2 = 12.7%
Note that damping coefficients must have units of force divided by
velocity. By substituting the proper numerical values into Eq. (1.14)
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the following expression for acceleration is obtained:
¥ = }F() — 1000y — 6.355 (1.15)

Although numerical integration, as in previous sections, will be used,
it must be modified, since it is now necessary to detérmine the velocity
8t each time station. The velocity at time station s will be approxi-
mately expressed by the following:

y(c) — y(a-—l) ) At .
iy A (1.16)

y(a) =
where the first term is the average velocity in the preceding time interval,
and the second term is an estimate of the amount by which that average
must be increased to give the velocity at the next time station. This
procedure is consistent with the concept of acceleration pulses on which
Eq. (1.5) is based and in addition approximates #“ as the mean of the
average velocities in the adjacent time intervals [Eq. (1.4)].

By substituting Eq. (1.16) into Eq. (1.14) and rearranging, the follow-
ing is obtained:

o = F® — ky® — o(y® — yo—D)/a¢

M 4 eAt/2

(1.14a)

- If we substitute the numerical values of the problem at hand and use a

time interval of 0.02 sec, Eq. (1.15) becomes

. F(a) y(ﬂ) -_— y("l)
) = — .. . (e) g ___ J
3197 940y 5.96 ( 0.02 ) (1.15a)

The computations for this analysis, which are based on Eqs. (1.5)
and (1.15e), are shown in Table 1.3. This table differs from previous
computation tables only in the additional columns, which permit the
calculation of the velocity at each time station. At ¢ = 0, 7 is obtained
by Eq. (1.15) rather than (1.15a), since the velocity is known to be zero
and the latter equation is not applicable. As in previous examples, the
displacement at the end of the first interval is computed by Eq. (1.7)
rather than (1.5).

The result of these computations is plotted in Fig. 1.11. For compari-
son, the solution obtained in Sec. 1.2¢, which differed only in that damp-
ing was not included, is also plotted. It should be noted that the effect
of damping on the first peak of response is not great. However, this
effect becomes considerable at the second positive peak, and will become
greater a8 time increases. Since the damping in most actual structural
systems does not exceed 10 percent of critical, it may be generally con-
cluded that damping is not of great importance with respect to the
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Table 1.3 Numerical Integration; Damped Elastic One-degree System
(Fig. 1.10)

y® — ya-1) gl — -1 F . g i (5) H yie
e a soe (g ’) 2127 | o) | Eo. (utse) | ¥ }‘M Bq. (1.5)
fp2 St/sect ft/zec? ft/sect 1t

0 0 0 25 .0% i) 25.0 0.0100 4]
0.02 0.26 1.5 28.2 4.7 22.0 0.0088 0.0050%
0.04 0.69 4.1 32.9 17.7 111 0.0044 0.0188
0.08 0.91 5.4 37.6 34.8 —2.6 ~0.0010 ¢.0870
0.08 0.86 6.1 42.3 50.9 —-13.7 —0.0055 0.0642
0.10 0.58 3.5 47.0 61.9 —18.4 —0.0074 0.0650
0.12 0.21 1.3 35.3 66.0 —32.0 —0.0128 0.0702
0.14 ~0.42 —-2.5 B.5 58.0 —3z.0 —0.0128 0.0617
0.16 —1.06 —6.3 23.5 38.0 —8.2 —0.0033 0.0404
0.18 —1.23 —-7.3 23.5 14.8 16.0 0.0064 0.0158
0.20 —0.91 ~5.4 23.5 -2.2 31.1 0.0124 | —0.0024
0.22 —0.29 -1.7 23.5 -7.7 32.9 0.0132 | —0.0082
0.24 0.37 2.2 23.5 —-0.8 22.1 0.0088 | —0.0008
0.28 0.81 4.8 23.5 i4.5 1.2 0.0017 0.0164
0.28 0.89 5.3 23.5 1.3 —-13.1 —0.0052 0.0333
0.30 0.63 3.7 23.5 43.2 ~23.4 —0.0004 0.0460
0.32 9.18 1.0 23.6 46.3 —23 —0.0095 0.0403
e3¢ | ... | oo ] e s e, 0.0431

* F)/2 singe @) = Q.
Tt = 0.02) = ¢ = 0) (A,

maximum stress in the structure, which usually oceurs with the first
peak of response. It should be noted, however, that for certain situa-
tions this statement may not be true. Examples of such exceptions
are multidegree systems in which higher modes are important and one-
degree systems with irregular Ioad-time functions.

1.5 One-degree Elasto-plastic Systems

Up to this point only linear elastic systems have been considered; i.e.,
the resistance function has been a straight line with slope k and without
upper limit. In many practical cases this function is nonlinear (the
slope is not constant} and/or inelastic (when the spring is unloaded the
resistance does not return to zero by the same path). These conditions
can easily be handled by numerical analysis provided only that the
resistance is a unique function of displacement. Attention here will be
focused on that type of inelastic behavior which is normally assumed in
structural design.

Considered below is the dynamic response of a structure which extends
through the elastic and into the plastic range. Because most structures
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FIGURE 1.11 Example. Response of damped and undamped systems.

. have considerable ductility, this type of behavior is entirely feasible.
. Although plastic behavior is not generally permissible under continuous

operating conditions, it is quite appropriate for design when the structure
is subjected to a severe dynamic loading only once or at most a few times
during its life. Among other examples which might be cited, plastic
behavior is normally anticipated in the design of blast-resistant struc-
tures and at least implied in the design of structures for earthquake.
This concept is of considerable importance in structural design for
dynamic loads because a much greater portion of the energy-absorbing
capacity of the structure is utilized thereby. The economy of the design
can be considerably inereased by taking this fact into account. In some
respects plastic behavior is similar to damping since it disrupts the
harmonic motions which are characteristic of elastic vibrations.

a. Resistance Function

Consider the one-degree system shown in Fig. 1.12a, the spring of
which is assumed to have the registance funetion shown in Fig. 1.125.
The latter is usually called a bilinear resistance function since all the
lines making up that function lie in one of two directions. As the dis-
placement increases from zero, the resistance increases linearly with a
slope of k, the spring constant. The linearity continues until the elastic-
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FIGURE 1.12 (a) Elasto-plastic system; (b} resistance
funection; (¢} load-time function.

limit displacement y, is reached, at which point the maximum spring
foree £, has been attained. As the displacement increages further, the
resistance is assumed to remain constant at B.. The latter value will
be maintained until the ductility limit of the structure is reached. How-
ever, if the displacement reaches a maximum before that limit and then
decreases, the structure is said to ‘“rebound.” During rebound the
resistance is assumed to decrease along a line parallel to the initial
elastic slope. This decrease will continue with decreasing displacement
until a spring force equal to —R,, is attained.

The resistance function described above is an idealization of that of
an actual structure. A real structure will have a curved transition in
the region of y. rather than the sharp break shown in Fig. 1.126. This
curvature occurs even when only one plastic hinge is necessary to develop
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the full plastic strength of the structure. If the structure is such that
more than one hinge is required, the transition range will be even wider.
Nevertheless, the resistance function shown in Fig. 1.12b:is an adequate
representation for the majority of structures. Strain hardening such

" ag exhibited by steel may be ignored sinee this oceurs only at very large

structural deformation, which is usually beyond the range of interest.
These points are further discussed in Sec. 5.2,

b. Fermulation of the Problem

By isolating the mass of the one-degree system as shown in Fig. 1.12a
and applying the concept of dynamic equilibrium, the equation of motion
may be written as in previous examples. For this inelastic case, it is
convenient to represent the spring force, or resistance, by the more
general notation R since the expression for resistance changes in the
various ranges of the resistance function. The equations of motion are
as follows:

(@) Mg+ R—F@ =0
B Myi+ky— F(@) =90 0 <y < ya (L17)
(C) My+Rm_'F(t) =0 yel<y<ym ’

@) Mi+ R —Fym =9 —FO) =0 (Yo —20) <Y < te

" where Eq. (a} is the general equation of motion, (b) applies in the original

elastic range, (c) applies in the plastic region, and (d) applies during the
elastic behavicr after y,, has been attained. Additional equations could
be written, but this is unnecessary since in most situations rebound
does not extend into the negative plastic range. The reader can easily
verify these equations since (b); (c), and (d) follow directly from (a) and
the included expressions for B become obvious upon inspection of the
resistance function in Fig. 1.12b.

c. Example

For purposes of illustration, the following numerical values are given
to the parameters of the one-degree system shown in Fig. 1.12:
M = 2 lb-gec?/ft
k = 2000 1b/ft
Rn=1101b

and therefore, yu = Rn/k = 0.055 ft

It may be noted that the elastic limit y,; can be computed directly from
the maximum resistance and the spring constant. The load-time fune-
tion is shown in Fig. 1.12¢. It is our purpose once again to determine
the response of the system in terms of displacement versus time. The '
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Table 1.4 Numerical Integration; Undamped Elasto-plastic
One-degree System (Fig. 1.12)

, YR = 1000y, | g s y
o it or56 | K (118)| ¥ (f"t“) Eq. (1.5)
Jt/sect ft/sect ¥is

0 25 0 25.0 | 0.0100 | 0

0.02 | 30 5.0 25.0 | 0.0100 | ©.0050
0.04 | 35 20.0 15.0 | 0.0060| 0.0200
0.06 | 40 41.0 ~1.0 | ~0.0004 | 0.0410
0.08 | 45 55.0 ~10.0 | ~0.0040 | 0.0616
0.10 | 50 55.0 -5.0 | —0.0020 | o0.0782
0.12 | 37.5 55.0 ~17.5 | —0.0070 | 0.0928
0.14 25 55.0 —30.0 —0.0120 0.1004
0.16 | 25 50.6* ~25.6 | —0.0102 | 0.0960
0.18 25 36.0* —11.0 —0.0044 0.0814
0.20 | 25 17.0% 8.0 | 0.0032| 0.0624
0.22 25 1.2* 23.8 0.0095 0.0466
0.24 35 —5.1* 30.1 0.0120 0.0403
0.26 | 25 0.6% 244 | 0.0088 | 0.0460
0.28 | 25 16.1* 8.9 | 0.0036 | 0.0615
0.3 | 25 35.2¢ ~10.2 | ~0.0040 | 0.0806
032 | 25 50.3* -25.3 | —0.0101 | 0.0057
03 | ..o | L 0.1007

* 1R = 56 — 1000(0.1004 — ).

problem stated is exactly the same as that solved in Sec. 1.2¢, except
that, in the latter case, no plastic limit was placed upon the spring
resistance, . . .

By inserting the numerical values of the parameters into Eq. (1.17),
the following expressions are obtained for acceleration:

(@) ¢ =14P@) — KR

() g = 34F () — 1000y 0 <y < 0.055

(¢ §=12F@)-55 0.055 < y < ym

@ 9 =23F@) — 55+ 1000(ym — §)  (ym — 0.11) <y < g,

The last three equations correspond to the last three of Egs. (1.17) and
apply to the same ranges of the resistance function. Since these ranges
are defined in terms of displacement, the analyst has no difficulty in
selecting the correct equation for use.

The numerical analysis of the problem, which is shown in Table 1.4,
ig conducted in exactly the same manner as in previous examples. The
only difference lies in the computation of the resistance RB. It will be

(1.18)
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FIGURE 1.13 Example. Responses of elastic system (R, > 158 Ib) and elasto-
plastic system (R, = 100 Ih).

noted that, in Eqs. (1.18), (b) was used up to ¢ = 0.06, (¢) was used
from 0.08 to 0.14, and (d) was used from ¢ = 0.16 to the end of the

computation.

© The results of the analysis are plotted in Fig. 1.13. Also shown in

_the same figure, for the sake of comparison, is the analysis of the com-

pletely elastic but otherwise similar system discussed in See. 1.2¢. It
will be recalled that, in the latter case, the maximum spring force devel-
oped was 159 Ib compared with the 110-1b maximum resistance specified
in the present example.

Several interesting comments may be made in connection with Fig.
1.13. First, the maximum displacement of the elasto-plastic system,
although greater than that of the purely elastic system, is not excesgively
0 in spite of the fact that only about two-thirds as much structural
resistance is available. On the other hand, the residual vibration of the
plastic strueture is considerably less than that of the elastic structure.
Note that, in either case, the residual vibration would continue indefi-
nitely in the absence of damping and that the periods are the same. In
the elasto-plastic system the amplitude of the residual vibration is given
by (Rm — F)/k since the numerator of this fraction is the amount by
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which the spring force must decrease in order to reach a point correspond-
ing to static equilibrium. The neutral position for the axis of vibration
may be computed as the maximum deflection minus the amplitude of
the residual vibration.

There is, of course, & permanent set, or distortion, in the structure of
this example. This may be computed as y,, — y« since y.; is the amount
by which the displacement would be reduced if all load were removed.
Thus, for zero stress in the spring, there would still be & permanent dis-
tortion of y» — y.. As indicated in Fig. 1.13, the permanent set is also
equal to the distance between the neutral position and the static elastic
deflection. If the structure were again loaded into the plastic range,
there would of course be additional permanent distortion.

The foregoing discussion was intended to illustrate the manner in
which elasto-plastic systems may be analyzed and also to point out some
of the distinguishing characteristics of plastic behavior. The advantage
of permitting plastic behavior should now be obvious, If the designer
can accept some permanent distortion in the structure, the amount of
resistance, and hence structural materials and cost, can be appreciably
reduced. In the example above, a reduction in the strength of about
one-third resulted in an increase in deflection of only about 25 percent.

In order to relate the above to a real structure, consider the rigid frame
shown in Fig. 1.6 and discussed in Sec. 1.2¢. The maximum resistance
of the frame to horizontal loading is given by 49%ps/h, where 9 is the
ultimate, or plastic, bending strength of the columns. For the SWF17
column section, this value is 43.4 kip-ft (s, = 33 ksi), and hence

R, = 8.68 kips

The latter value plus the W and k as given by Eqgs. (1.10) would permit
an elasto-plastic analysis of the frame.

The procedure given in this section can in general be applied to multi-
degree systems as illustrated in later chapters. The discussion above,
together with that in Sec. 1.3, should make it apparent that no unusual
difficulties are to be encountered.

1.6 Alternative Methods of Numerical Analysis

The constant-velocity proeedure presented in Sec. 1.2 and used in sub-
sequent sections is an extremely simple method which yields any desired
precision provided that the time interval is taken sufficiently small.
There are many other methods'~** of numerical analysis, some of which
are presented below. These have the advantage that greater precision

* Buperior numbers correspond to References at the end of the text.
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FIGURE 1.14 Numerical integration—
linear-acceleration method. 5

§+1 t
is achieved for a given time interval, but the disadvantage that more
complex computation is required within each interval. Conversely,
for a given precision, these methods permit a larger time interval than
does the constant-velocity method. The choice depends to some extent
upon the computational device being used. Although the point is
debatable, the author believes that more efficient solution generally
results from usc of a less complex recurrence formula (e.g., the constant-
velocity method) together with a somewhat smaller interval.

a. Linear-acceleration Method

An obvious refinement of the constant-velocity procedure is to assume

a continuous function for acceleration rather than a step function (Fig.
1.3b). Suppose, for example, that the acceleration were assumed to
vary linearly between time stations as indicated in Fig. 1.14. The
acceleration between stations s and s + 1 would then be approximated by
) — g

jj{at1
g=go L V"

Y {t — t®) (1.19)

The velocity at any time within the same interval may be obtained by

g=g9+ [ gdt
. . g(s-l—l) — y(-)

or ¥ =99+ gou — @) + oAl (t — tn)? (1.20a)
which, at station s + 1, becomes

FEHD = o 4 ‘% (0 4 i) (1.208)
The displacement at s + 1 is given by

et} R
gt = yo 4 o Yt
= y® y(8) (iAt)z j(e) i (a1}
= YO+ g0 AL+ = (249 + ) (1.21)
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where, from Eq. (1.20a),
, , At
y© = g 4 5 (F@ + =) (L.22)

Equations (1.21) and (1.22) are the basis for the linear-acceleration methed
of numerical integration.

At a particular stage in the computations % i8 known, and hence
¥ can be computed directly. However, in order to obtain ¥+, one
must first obtain 7%+?, which depends upon y“+v. If the analysis is
for a one-degree system, the acceleration at s + 1 is given by

F__(t_;;_l)._)_ —_ % y(i+1)

Substituting this expression into Eq. (1.21) and rearranging, we obtain

y‘i(ﬂ‘H) —_

Yy + 7o At + %ﬁ“) 4 (At)zm
T 3__ — (1.23)
2 -
14 B0° E
6 M

This equation, together with Eq. (1.22), permits a direct solution in
each interval; that is, y**" may be computed directly from ¥ (and
hence 7} and 5.

If the system has more than one degree of freedom, the acceleration
at one point depends not only upon the displacement at that point,
but also upon the other displacements of the system. Therefore the
equation comparable with Eq. (1.23) is much more complicated. In
such cases it is usually advisable to adopt an iterative procedure in which
values of ¢+ are assumed and used in Eq. (1.21) to obtain y¢+2. New
values of §j*+V are then computed by the equations of motion, and the
process repeated to convergence. This additional complication in the
analysis of multidegree systems is not encountered in the constant-
velocity procedure.

An example of the linear-acceleration method is given in Table 1.5,
where the response of a one-degree system subjected fo a suddenly
applied constant force is computed. The time interval used is approxi-
mately one-tenth the natural period, which, although smaller than that
required for sufficient precision by this method, is selected to afford a
comparison with the constant-velocity procedure. For the given param-
eters of the problem, Eqs. (1.22) and (1.23) reduce to the simple forms
shown in Table 1.5. Note that this procedure is sel{-starting; i.e., the
recurrence formula may be used without modification in the first step.

Shown in Table 1.5 are comparative results provided by an exact
solution and also by the constant-velocity method using the same time

Numerical Analysis of Simple Systems 29

Table 1.5 Numerical Integration by Linear-acceleration Method;
Compuarison with Constanit-velocity Method and Exact Solution

T = 0.1047 sec; w = 60 rad/zec
Buddenly applied constant force F1; F\/k = 1
.+ ky/M = Fi/M; § = 3600(1 — o)

Eq. (1.22): g = g1 4+ 0.005( + gt ) *
Eq. (1.23); yirt0 = ¥® 4 0.015® 4 (§®/30,000) 4 0.06
1.06
Linear- Constani-
i Ezact .
p g g acceleration solution velocity
method method
sec Jt/sect fpa y® y= @
1t ft 1
Q0 3600 0 (1] 0 0
0.01 2990 32.95 0.1698 0.1747 0.1800
0.02 1362 54.71 0.6217 0.6376 0.6562
0.03 —728 57 .88 1.2021 1.2272 1.25656
0.04 —2570 41.39 1.7138 1.7374 1.7638
0.05 —3539 10.85 1.9830 1.9901 1.9971
0.06 —3306 —23.38 1.9183 1_8068 1.8714
0.07 —1950 | —49.66 1.5416 1.4903 1.4320
0.08 +68 —59.07 0.9811 0.9125 0, 8371
0.00 2062 —48.42 0.4271 0.3653 0.3008
0.10 3357 —21.33 0.0675 0.0398 0.0162
011 | ..o | Ll 0.0246 0.0497 0.0858

interval. At first glance it may appear that both numerical methods
result in considerable error. However, comparison at discrete time
stations i3 misleading since much of the apparent error is due to a slight
phage shiff, which is generally of little consequence. In other words,
there is little error in the peak responses.

As expected, the constant-velocity method is slightly less accurate.
On the other hand, the linear-acceleration method requires considerably
more computation, which is significant whether the calculations are
being done by hand or by electronic computer. Actually, the difference
in the accuracy of the two methods is not great in this case. However,
the difference may be appreciable if the load varies with time in irregular
fashion. It should be emphasized that this comparison of accuracy is
given only for illustration. In a particular problem the desired accuracy
is indepenclent of the method used and the choice is one of time interval,
In general, an interval of 14 the natural period is small enough for the
linear-acceleration method, while the constant-velocity method requires
a ratio of about 1{.



20 Introduction to Structural Dynamics

Because of the difficulty mentioned previously, the difference in the
amount of ecaleulation required by the two methods increases rapidly
as the number of degrees of freedom increases,

b. Newmark 8 Method*

A versatile method developed by N ewmark, which can be adjusted to
suit the particular problem, is embodied in the equations

oD = g 4 % (H@ + gletv) (1.24a)
and y@+D — gy 4 g Af (22 — BYF® (AD)? 4 Byt+v (Af)? (1.24b)

Within certain limits 8 may be selected at will and in effect is an assump-
tion regarding the variation of acceleration within the time interval.
The value selected affects the rate of convergence within each step (if
iteration is being used), the stability of the analysis, and the amount
of error. The effect of the 8 value is of course also related to the time
interval. Thorough investigations of the method have been made,’ and
in general it may be stated that best results are obtained if 8 is taken
within the range 1¢ to 14 and Af at about 14 to 15 of the shortest natural
period. Inspection of Egs. (1.24) reveals that B8 = %§ corresponds
exactly to the linear-acceleration method previously given.

c. Finite-difference Methods

A large variety of recurrence formulas may be derived by finite-
difference techniques.! These are generally of the same form as those

discussed previously. To illustrate, it must be recalled that the firat
backward difference is

V(y®) = y® — ye

and the second backward difference is

VAHy®) = V(y®) — v(yen)
= y® — 2ye-D 4 -2

and higher orders are given by
V) = V(@) — e(ye-n)

Since the second difference divided by the square of the time interval

approximates the second derivative at the central time station, we may
write

(At)2ﬂ(8-—l) Vz(y(a)) i y(a) — 2y(o—1) + y(aﬁﬂl
or y(:) o 2y(a--1) — y(s—2) + g(-—l) (At)z
or y(a+1) = zy(a) _ y(s—l) + ?i(a) (At)2

g
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which is exactly the same as the recurrence formula (Eq. 1.5) for the
constant-velocity method. .
As examples of formulas giving greater precision, there are those

embodied in the Adams method,

y(c+lJ = y(a) + At(l + %V + ;;{zvz + %V3 + . .)y(a) (1.25:1,)
or the modified Adams method,

yorh = 4O ANl — 14V — L{aV2 — 15,V% — - . Jgetn  (1.25p)

Equation (1.25a) is of the open type (since no knowledge is required at
s+ 1), and Eq. (1.25b) is of the closed type. As many different tex:ms
as desired may be retained in these equations, but since the successive
terms diminish in magnitude, only the first two or three are necessary
in practice. For example, if Eq. (1.256) iz truncated after the first
difference, we obtain

gty = ¢y 4+ Al(l — Lgv)gletD
= g | %f' (gle+t + o) (1.26)
We may also increase the order of the derivatives in the last equation
to obtain

g(a+1) — gm + %t (g(aﬂ) + g(a)) (1.27)

Equations (1.26) and (1.27) together provide a possible method of

" numerical integration. Equation (1.27) is the same as the velocity

equation (1.24) of the Newmark 8 method. Furthermore, if Eq. (1.27)
i8 substituted into (1.26),

Y+l = g 4 g Af 4 __(Ai)* (D + §®) (1.28)

which is the Newmark method with g = 14. ' '

Other finite-difference equations can be written which do not mvoh:e
velocity. Examples are those sometimes referred to as Stormer’s
method:

YD = 2@ — oD 4 (AYHL + MoV + MoV - - g
and
yetd = 200 — D) L (A1 — V 4 {72 — L, oVi 4+ - - e+

Note that, if only the first term in the parentheses of the first equation is
retained, the result is identical with that obtained by the constant-
velocity method [Eq. (1.5)].
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Problems

L1 (?ompute by numerical integration the response of a one-degree system to the
load-time funetion shown in Fig. 1.15. W = 200 b, and & = 300 lb/in. Use the

200~ ———~ o

£l b

80} ————

I

i

i
0 0.06 014 0.22 FIGURE 1.15 Problem 1.1. Load-time
t, sec function,

lumped-impulss, or constant-velocity, procedure snd a time interval of 0.02 sec.
Plot deflection versus time up to maximum response.
Answer
Ymax = 0.972 in.
1.2 a. Compute by numerical analysis (Af = 0.1 sec) the horizontal deflection of the

frame in Fig. 1.6 due to the load-time function shown in Fig. 1.16. Plot the result up
to maximum response.

o 4000
<
* 2000f-— -
|
!
0 1 FIGURE 1.16 Problems 1.2 and 1.4.
0 0.3 £ sec Load-time function.
Answer
Ymax = 0,148 ft
b. Compute the maximum column bending stress,
Answer
Tmax = 22.2 ksi

1.3 A one-degree system having a natural period of 1 sec is subjected to the loading
shown_in Fig. 1.17. The peak force (5000 1b) if applied statically would cause a
deflection of 2 in. Write the equation for § (in terms of ¢ and y only) to be used in a
numerical analyais up to ¢ = 0.50 sec.

14 A two-degree system (Fig. 1.7} is defined by the parameters

M, = 2.0 |b-sec?/in. k1 = 3000 1b/in.
M3 = 0.5 Ib-gec!/in. k2 = 1500 1b/in.

Determine the displacement of each mass for the load-time function shown in Fig.
116, with the time 0.3 sec changed to 0.05 sec, F,(f) being plus and Fi(t) being
minus the force values given. Use the lumped-impulse procedure and a time interval
of 0.01 see. Plot y, and Yz up to ¢ = 0.1 sec.
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W,
FIGURE 1.17 Problems 1.3 and 1.5. Load-time do 0.50
funetion. t, sec

1.5 Plot the horizontal displacement of both floors of the rigid frame shown in Fig.
1.9 due to /(t) as shown in Fig. 1.17 and 7, () with the same duration but a peak value
of 1000 Ib. Use a time interval of 0.08 gec.
Answer

(Ul)mn = (.060 ft

(¥2)max == 0.113 it
1.6 Repeat Prob. 1.1, including 8 percent of critical damping.
1.7 Make an elasto-plastic analysis of the system and loading given in Prob, 1.1,
except that in this case the maximum plastic spring resistance is 140 Ib, Plot the
results up to maximum displacement. Note that the two analyses are identical up
to the elastic limit.
Answer

Ymax = 1.612 in.
1.8 Make an elasto-plastic analysis of the frame given in Prob. 1.2, except that the
magnitude of load is now twice that shown in Fig. 1.16. The ultimate bending capac-
ity of the columns may be taken to be 43.4 ft-kips.
Answer

Yomax = 0.30 ft

&= 4n? Kips/ft Flt)

Rn=10kips
ﬁ ——
|
M =1kip-sec?/it 1
]
1 0 03 04
Flt) t, sec

FIGURE 1.18 Problem 1.9. Dynamic system and
load function.

1.9 «. Using a numerical analysis, compute for the one-degree system and loading
shown in Fig. 1.18 the value of F; which would cause the spring force to reach R,, but
remain elagtic. Use Af = 0.05 sec.
Anzwer

F, = 9.1 kips.

b. If F, were greater and the spring went piastic, what would be the amplitude of
the residual elastic vibration?
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Rigorous Analysis
of One-degree Systems

2.1 Introduction

In Chap. 1 simple dynamic systems were analyzed, u.sing .numerical
methods. Rigorous, or closed, solutions will be discussed in this cha,piier.
In other words, the solution will be obtained in the form o.f an equatlo_n
giving the displacement as a function of time. Such solut:Pns are obvi-
ously preferable, but, as mentioned previously, are .possuble. or_lly for
simple systems subjected to mathematically simple time va:rlatlons' of
load. TUnfortunately, such situations do not usually oceur in pra-.ctlce.
However, a study of rigorous solutions for one-degree systen'ls subjected
to typical load-time funetions is worthwhile for the followmg reasons:
(1) it enables the student to identify certain {ypes of response with ceﬂ.;a.m
types of load-time functions and to isolate the effects ot: the. various
parameters involved ; and (2) many practical cases may b.e idealized th
one of the simple forms to be discussed, thus making possible an 8pproxi-
mate solution of the actual cage. With regard to the first reason given,
examples of the type of phenomena which should be understood are the
effect of a suddenly applied load as compared with one which builds up
to its maximum value in a finite time, the effect of a decaying load as
compared with one which remains constant with time, the importance
of the duration of the applied load relative to the natural pfariod of the
gystem, and the general effect of damping. An understanding of these

effects enables the analyst to idealize an actual system as mentioned in
4
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FIGURE 2.1 One-degree damped system. VAlreY]=Flt)

reason 2 given above. Since such approximations are frequently made,
it is convenient to have nondimensional charts giving the response of
one-degree systems to certain standardized loads. Such charts are dis-
cussed and presented in this chapter.

All attention in this chapter will be focused on the simple system shown

in Fig. 2.1, for which the equation of motion as it has been derived in
Chap. 1 is

MG + ky + cg = Filf(2)] 2.1)

where F is a constant-force value which may be arbitrarily chosen, and
f() is a nondimensional time function. The right side of Eq. (2.1) is
thus the load-time variation. The purpose of this chapter is to develop
closed solutions of the differential equation for various load-time fune-
tions. The treatment is restricted to linear elastic systems, except in

the case of Secs. 2.7 and 2.8, where bilinear elasto-plastic systems are
considered,

22 Undamped Systems

a. Free Vibration

Consider, first, the elementary ease where ¥ equals zero and there is
no damping; that is, ¢ = 0. Motion will occur only if the system is
given an initial disturbance, which may take the form of an initial dis-
placement y, (imagine that the mass is displaced and then released at
t = 0) or an initial velocity (which might be produced by an impulse
or impact) or a combination of the two. The resulting motion, unaffected

by any external force, is called free vibration. The equation of motion
for this situsation is simply

ﬁ+ﬂy=0 (22)
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and the solution * of this equation is

. [k 3
y = Cq 8in Ht+Czcos Jl_lt
or, letting \/k/M = w,
Yy = C]_ 8In wi + 02 CcOo8 wi (23)

The constants € and C; depend upon the initial eonditions of the prob-
lem, and may be evaluated by substitution into the solution, with time
taken as zero. For example, if the initial velocity is g, and the initial
displacement is y,, the constants are determined as follows. Equation
(2.3) at £ = 0 may be written as

Yo = C18in w(0) + C; cos w{(0)
Therefore Cs =y,

Differentiating Fq. (2.3) and substituting ¢ = 0, we obtain
%o = Cw cos w(0) — Caw sin w(0)
Therefore C, = %

Substituting these expressions for the constants into Eq. (2.3), we obtain
the solution for zero external load as

y = y—‘:sin wt + ¥, €08 wt (2.4)

The displacement given by Eq. (2.4) is plotted in Fig, 2.2 for the cases
of initial velocity and initial displacement taken separately.

b. Natural Period and Frequency

The free vibration discussed above is said to be harmonic ; that is,
y varies sinusoidally with £. ‘The motion is completely repetitive if there
is no damping in the system. The harmonic motion is defined by an
amplitude (y, or 3./« in Fig. 2.2) and a natural period, which is the time
required for the motion to go through one complete cycle. The initial
conditions affect only the amplitude of the vibration.

The parameter o (Sec. 2.2a) is called the natural eireular frequency.

. k
Natural circular frequency = w = A ’H rad/sec (2.5)
* The solution of differential equations will not be discussed herein since it is
assumed that the student is familiar with such procedures. The solutions given may
be easily verified by substitution into the original differential equation.
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FIGURE 2.2 Free vibration of one-degree undamped system.
{a) Initial displacement; (b) initial velocity.

Since one complete cycle occurs for each angular increment wi — 2,
the natural period of the system is given by

Natural period = T = 2::[ = 2 % sec (2.8)

Note that the natural period and frequency are characteristics of the system
and depend only upon the mass and the spring constant. The natural
frequency (not circular frequeney) is defined as the inverse of the natural
period, or the number of cycles per unit of time.

1
T

k cps (2.7)

Natural frequeney = [ = 2% W

¢. Forced Vibration

Consider now a case in which the motion is the result of an applied
force F(t). It will be assumed that the system begins at rest; i.e., both
the velocity and displacement are zero at t = 0, Obviously, this is not a
necessary condition, and solutions could be obtained for the combination
of the two effects.

To begin with a simple case, assume that F(¢) has a constant magnitude
F, which is suddenly applied and remains constant indefinitely. For
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FIGURE 2.3 Response of undamped one-degree system to sud-
denly applied constant force.

thig situation Eg. (2.1) becomes

.k F
¥+ Y= ll_/ll' (2.8)
The solution of this equation is
y = Ci8in wt 4 4 cos wt + % (2.9)

where once again the constants ¢'; and C, are determined by the initial
conditions. Substituting into Eq. (2.9), ¥ = 0 and t = 0, one obtains

0 = Cy sin (0) + C; cos (0) + %

_ 5

Therefore Cy = T

In order to obtain C, Eq. (2.9) is differentiated, and into the resulting
equation is substituted y = 0 and ¢ = 0 as follows:

¥ = Cwcos (0) — Cow sin (0) = 0
Therefore Ci=10

If these values of C, and C, are substituted into Eq. (2.9), the final solu-
tion is obtained:

Yy = l—;;—l (1 — cos wf) (2.10)

This solution for a suddenly applied constant load is plotted in Fig. 2.3.

It will be observed that the solution just obtained is very similar to
the previous solution for free vibration (Fig. 2.2). The only difference
i8 that the axis of the vibration has been shifted by an amount equal

Rigorous Analysis of One-degree Systems 39

DLF
2 ——————————————— B — —_
7 — t

FIGURE 2.4 Dynamic load factor (DLF) for an undamped
one-degree system subjected to a suddenly applied con-
stant force.

to F1/k. It will also be noticed that the maximum displacement 2F,/k
is exactly twice the displacement which would oceur if the load F, were
applied statically. Thus we reach an elementary but very important
conclusion: If a constant force is suddenly applied to a linear elastic
system, the resulting displacement is exactly twice that for the same
force applied statically. The same observation is true regarding the
dynamic force in the spring, which is proportional to the displacement.
Furthermore, since the spring-mass system represents an actual structure,
the same statement may be made regarding both dynamic deflections
and stresses in that structure.

d. Dyrnamic Load Factor

It is now convenient to introduce the concept of the dynamic load
factor (DLF). This factor is defined as the ratio of the dynamiec
deflection at any time to the deflection which would have resulted from
the static application of the load F;, which is used in specifying the
load-time variation. Since deflections, spring forces, and stresses in the
structure are all proportional, the dynamic load factor may be applied to
any of these in order to obtain the ratio of dynamic to static effects.

In the preceding example, which involved a suddenly applied constant
load, the static deflection is Fi/k. Thus the dynamic load factor is
given by

Y y ky
F= - = = 2.11
DL e = Fik ; (2.11)
Substituting Eq. (2.10) for y,
DLF = 1 — ¢o8 wt (2.12)

Thus the dynamic load factor for this case is as shown in Fig. 2.4. It
is apparent that the dynamic load factor is nondimensional and inde-



40 Introduction to Structural Dynamics

pendent of the magnitude of load. It is because of this fact that its use
is convenient.

In many structural problems only the maximum value of the DLF
i of interest. In the case just considered, this maximum is 2, which
immediately indicates that all maximum displacements, forces, and
stresses due to the dynamic load are twice the values that would be
obtained from a static analysis for the load F,.

In cases where the applied load is not constant, ¥, upon which the
DLF is based, is some arbitrarily selected value of the load. This load
value is usually, but not necessarily, taken as the maximum whieh occurs
at any time during the period of interest.

2.3 Various Forcing Functions (Undamped Systems)
a. Generalized Linear-systems Theory

Before discussing responses for various load-time functions, it is con-
venient to obtain a general solution applicable to any such function.
First, however, let us recall the concept of impulse, which is defined as
the area under the load-time curve.

Suppose that a system at rest is subjected to a constant force ¥ with a
duration {;. The mass of the system, having an initial acceleration
4 = F/M, will begin to move. If #;is a very short time relative to the
natural period, little spring resistance will be developed during the time
ta. If such resistance is negligible compared with F, the acceleration
can be considered constant and the net effect will be a velocity imparted
to the mass. The value of this velocity at time £; will be

. _F 9
¥ =gla= th = _(2.13)

where 7 is the applied impulse equal to the area under the load-time curve.
If the assumption stated above and implied by Eq. (2.13) is valid, < is
said to be & pure impulse. To give a quantitative feeling for this concept,
it may be said that the error in Eq. (2.13) is negligible if ¢, is smaller
than about one-tenth of the natural period. Obviously, in such cases,
the actual shape of the load-time function during the time {; is of no
importance.

Turning now to a general load function such as shown in Fig. 2.5,
consider the area in the element of time dr to be a pure impulse. This
causes an increment of velocity at 7 equal to Fof(r) dr/M, which may be
considered as an initial velocity imparted to a system at rest. The
displacement at & later time due to this single element of impulse is given
by Eq. (2.4) if g, is the initial velocity just defined and if y, is taken as
zero (since there is no initial displacement corresponding to the effect
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of this impulse). Thus we obtain

Fifz) dr

7 sin w(f — 1)

which is the displacement at time ¢ due to the load applied during dr.
Since the system is linear, superposition may be employed and the total
displacement at ¢ is the sum of the effects of all elements of impulse
between zero and t. Thus

FES) gin wlt — 7) dr (2.14q)
o Mw

Since the static deflection (due to F,) may be represented by

Fy ¥
Vo = = o

Eq. (2.14a) may also be written as
y =y [ 1) sin w(t — 1) dr (2.14b)

To make the equation even more general, the effects of initial displace-
ment and velocity may be included by superimposing Eqs. (2.4) and
(2.14b):

¥ = Yo cos wl + %siu wl + 0 fotf(r) sinw(t —r)dr (2.15)
where y, and g, are the displacement and velocity (if any) at ¢ = 0.

Equation (2.15) is a perfectly general expression for the response of
an undamped, linearly elastic one-degree system subjected to any load
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function and/or initial conditions. A closed solution is of course possible
only if the integral can be evaluated. Applications of Eq. (2.15) are
illustrated below. '

b. Rectangular-pulse Load

Consider first the case of a suddenly applied constant load with a
limited duration ¢; as shown in Fig. 2.6a. The system starts at rest, and
there is no damping. Up to time &4 Eq. (2.10) applies, and at that time
we have

Yy = % (1 — CO8 mtd)

. o
Yy = 5w SIND OJtd

k

For the response after ts we may apply Eq. (2.15), taking as the initial
conditions the velocity and displacement at {. Replacing ¢ by ¢ — t4
and y, and g, by y., and 3, and noting that f(r) = 0, we obtain
Fl F1 - .
y=7 (1 — cos wty) cos w(t — &) + + §in wls 8in w(t — #3)
= % [cos w(t — 2} — cos wi] {2.16a)

Bince F1/k is the static deflection and the dynamic load factor is given
by y/yx, we may write

DLF=1—GOSwt=1-GOS2T% 11
DLF

o

¢ (2.16b)

WA

]
[N

cos w(t — fg) — cos wl
{ ta t
cos2r (- — =) — cos 2o

r T T

It is often convenient to nondimensionalize the time parameter as indi-
cated in Eqgs. (2.16b), where 7T is the natural period. This also serves
to emphasize the fact that the ratio of duration to natural period, rather
than the actual value of either quantity, is the important parameter.

Two typical responses are plotted in Fig. 2.6a, and it is easy to visualize
the response for an intermediate value of t/T. The maximum dynamic
load factor obtained by maximizing Eqs. (2.16b) is plotted in Fig. 2.7a.
Obviously, as the duration approaches zero, the maximum deflection,
or stress, also diminishes to zero. A less trivial observation is that,
if (ta/T) > 0.5, the maximum response of the system is the same as if
the load duration had been infinite. '

Charts such as Fig. 2.7 (and also Figs. 2.8 and 2.9) are extremely
useful for design purposes, as illustrated in Chap. 5. For a given load
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funetion one need know only the natural period in order to read from
the chart the maximum DLF and hence the ratio of maximum dynamic
to static stress. Also given in Fig. 2.7b (and Figs. 2.8b and 2.9b) is the
time at which the maximum stress, or deflection, occurs. This time is
often a matter of considerable importance. In the derivation of these
charts no damping has been included because it would have no significant
effect. The maximum dynamic load factor usually corresponds to the
first peak of response, and the amount of damping normally encountered

-in structures is not sufficient to decrease appreciably this value.

c. Triangular Load Pulses

Consider next a system initially at rest and subjected to a force F
which has an initial, suddenly applied value of F, and decreases linearly
to zero at time & (Fig. 2.6b). The response may be computed by Eq.
(2.15) in two stages. For the first stage, .

T -<\ ta:

=0 $=0 f@=1-7
d

Substituting these values in Eq. (2.15) and integrating,

y = % (1 — cos wf) + g—:(@;ﬂ - t) (2.17a)
or  DLF =1 — cos ut + Sl:t:t ~ é (2.170)

which defines the response before ¢;. For the second stage, from Eq.
(2.17q),

. _ F, {sin wta
T ? ta: Yo = T (-—wtr co8 u:t.g)
Yo = %. (w sin wiy + coi:’td - %‘)
fr) = 0

Substituting these values in Eq. (2.15), replacing ¢ by ¢ — ts, and
simplifying,

_F . K
Y= oot > [sin wt — sin w(t — )] T ¢0s wi (2.18a)
or DLF = % [sin ot — sin ©(t — £a)] ~ cos wt (2.18b)
d

which gives the response after #,.
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function and/or initial conditions. A closed solution is of course possible
only if the integral can be evaluated. Applications of Eq. (2.15) are
illustrated below.

b. Rectangular-pulse Load

Consider first the case of a suddenly applied constant load with a
limited duration ¢; as shown in Fig. 2.6a. The system starts at rest, and
there is no damping. Up to time #, Eq. (2.10) applies, and at that time
we have

Yea = % (1 — COB mtd)
Yoa = Tl w SN wiy
For the response after & we may apply Eq. {2.15), taking as the initial
conditions the velocity and displacement at ¢, Replacing ¢ by £ — ¢,
and y, and § by ¢, and ¢, and noting that f(r) = 0, we obtain
y = % (1 — cos wia) cos w(t — &) + %Sin wle 8in w(t — £3)

= % [cos w(t — ts) — cos wt] (2.16a)

Since F1/k is the static deflection and the dynamic load factor is given
by 4/y., we may write

DLF=1—cos;ot=1-—cos2ar% t

)

T (2.16D)
DLF = cos w(t — f2) — cos wt

_ t__td _ H
= ¢os 2 (7’ ?) cos 21:-",1;,

WA

&

It is often convenient to nondimensionalize the time parameter as indi-
cated in Eqs. (2.16b), where 7T is the natural period. This also serves
to emphasize the fact that the ratio of duration to natural period, rather
than the actual value of either quantity, is the important parameter.

Two typical responses are plotted in Fig. 2.6a, and it is easy to visualize
the response for an intermediate value of ta/T. The maximum dynamic
load factor obtained by maximizing Eqs. (2.16b) is plotted in Fig. 2.7a.
Obviously, as the duration approaches zero, the maximum deflection,
or stress, also diminishes to zero. A less trivial observation is that,
if (t2/T) > 0.5, the maximum response of the system is the same as if
the load duration had been infinite. '

Charts such as Fig. 2.7 {(and also Figs. 2.8 and 2.9) are extremely
useful for design purposes, as illustrated in Chap. 5. For a given load
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function one need know only the natural period in order to read from
the chart the maximum DLF and hence the ratio of maximum dynamie
to static stress. Also given in Fig. 2.7 (and Figs. 2.8b and 2.9%) is the
time at which the maximum stress, or deflection, occurs. This time is
often a matter of considerable importance. In the derivation of these
charts no damping has been included because it would have no significant
effect. The maximum dynamic load factor usually corresponds to the
first peak of response, and the amount of damping normally encountered
in structures is not sufficient to decreage appreciably this value.

c. Triangular Load Pulses

Consider next a system initially at rest and subjected to a force F
which has an initial, suddenly applied value of #; and decreases linearly
to zero at time #; (Fig. 2.6b). The response may be computed by Eq.
(2.15) in two stages. For the first stage, .

-9
— y . — — T
¥ =0 Yo = 0 fir) =1 L

Bubstituting these values in Eq. (2.15) and integrating,

y= %3 (1 — cos wi) + {;—;(@;—w; — t) (2.17a)
or ~ DLF = 1 — cos ut + S‘;’t:" ~ Zt; (2.17b)

which defines the response before f;. For the second stage, from Eq.
(2.17a),

T 2l Yo = %(’%‘ -~ €08 wtd)
d
’
N 't . coswhg 1
Yo = 5 (w sin wiy + 0 ﬂ)
fir} =0

Substituting these values in Eq. (2.15), replacing ¢ by ¢ — t;, and
simplifying,

P . _F

y = oy [sin wt — sin w(t — t4)] % cos wh (2.18a)

or DLF — % [sin @t — sin w(t — )] — cos wf (2.185)
d

which gives the response after {,.
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FIGURE 2.6 Typical responses of one-degree elastic systems. (a)
Rectangular pulse; (5) suddenly applied trinngular pulse; (c) sym-
metrical triangular pulse; (d) constant force with finite rise time.
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Typical responses for this type of forcing function are shown in Trig.
2.6b. Maximum dynamic load factors and the time of that maximum
response are given in Fig. 2.7. As would be expected, (DLF)gax — 2
a8 ta/T becomes large, or in other words, the effect of the decay in force
is negligible in the time required for the response to reach the first peak.
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FIGURE 2.9 Maximum response of one-degree elastic systems (undamped)
subjected to constant force with finite rise time. (U.8. Army Corps of
Engineers.10)

Consider now a symmetrical triangular pulse which starts at zero and
reaches & maximum at one-half the total duration (Fig. 2.6c). In this
case, Eq. (2.15) must be applied in three stages, taking for the initial
conditions of each stage the final velocity and displacement of the pre-
ceding stage. The time functions to be used are as follows:
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ey =27 0 <7< Yty
s =2(1-7) <<
fr) =0 la S 7 .
' Following the same procedure as in previous cases, we obtain
DLF = 2 (¢ — Sin et 0 <t < Ml
te w
2 1 . ta .
DLF:t_td_t-'_c_o 2 8in w tw—é ~ §in wi Lts £t < b
d

(2.19)

DLF = 2 [2sinw {1~ %) = sin wt — sin o(t ~ 2) te < 1
wlq 2

‘Typical responses are plotted in Fig. 2.6¢, and maximum response as a
function of /T is given by Tig. 2.8. It may be observed that, for this
load-time function, the maximum dynamic effect occurs when the dura-
tion of loading is approximately equal to the natural period of the system.

d. Constant Force with Finite Rise Time

Since, in reality, a force ean never be applied instantaneously, it is
of interest to investigate a loading which has a finite rise time but remains
constant thereafter as shown in Fig. 2.6d. In this case the load-time
functions ars

fir) =’§ T <
f@y=1 >4

where £, is the rise time. Proceeding as in previous cases,

DLF = %(t s ‘“t) t

AN

L
r w

, (2.20)
DLF = 1+ = [sinw(t ~t) —snw] ¢34

Typical responses are shown in Fig. 2.6d, from which it may be deduced
that, if 4, is large relative to T, the response simply follows the applied
load and the dynamic effect is negligible. In Fig. 2.9, (DLF)y.; and
the time of maximum response are plotted. Here the effect of rise time
is apparent. If ¢, is less than about one-quarter of the natural period,
the effect is essentially the same as for a suddenly applied load. This
observation is of significance in practical design sinee it indicates that
smaller rise times may be ignored. A peculiarity of this type of load
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FIGURE 2.10 Example. Response of a beam having negli-
gible mass.

pulse is the fact that, if the rise time is a whole mult.iple of tbe natural
period, the response is the same as if F; had been applied statically.

e. Example

To illustrate the use of the charts just discussed, consider th(:: case
of a steel beam supporting a concentrated mass (Fig. 2.10) a.pd S}lbjected
to a dynamic load of the type shown in Fig. 2.6d with 2 rise time ¢ of
0.075 sec and a maximum value F, of 20 kips. If the weight of the beam
is considered negligible, the system hags only one degree of freedom. We
wish to determine the maximum dynamic bending stress.

First the natural period of the one-degree system ‘must be computed.
The spring constant % is defined as the force at midspan necessary to
cause 8 unit deflaction at the same point. Thus

_48EI _ 48 X 30 X 108 X 8006 _ g0y i
B (20 x 12)?

M 10
- £~ — = (.111 see
T=2\[7 = 2" \|3gg x 532 ~ O-111%e

Entering Fig. 2.9 with ¢./T = 0.075/0.111 = 0.68, we obtain

(DLF) pax = 1.38

3
= =1.23
i 1.2

k
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- The maximum dynamie stress equals the static stress due to the 20-kip

force multiplied by (DLF),,.,.

max 8t1es8 = opuy = (DLF) e X 0,

_ Fija 20 X 240/4 .
= (DLF)mnx X T = 1.38 X “——m——- = 18.6 ksi

The time at which this maximum stress occurs is

fe = (:2) t. = 1.23 X 0.075 = 0.092 sec

24 Damped Systems

As mentioned previously, if one is interested in a continuing state of
vibration rather than merely the first peak of response, the effect of

- damping must be included. For the one-degree system shown in Fig.

2.1, with viscous damping, the equation of motion as derived in Sec. 1.4 is
Mg+ ky + ey = F(o) (2.21)

Damping, indicated in Fig. 2.1 by the conventional dashpot, produces a
forceé ¢y which opposes the motion and dissipates some of the energy

- of the gystem.

a. Free Vibration

We consider first the case in which there is no external force and the
system is subjected to an initial disturbance. The solution of Eq. (2.21)
with the right side equal to zero is '

¥ = e (Cy sin wat + C; cos wat) (2.22)

. where 8 = ¢/2M, and ws = \Va? — B2 B is a measure of the amount

of damping present, and w, is the natural frequency of the damped sys-

. tem, which is somewhat different from that of the undamped system .

Equation (2.22) applies only when 8 < w. The solution for eases in

" ‘which this condition is not met (overdamping) is of limited importance
and will not be considered here.!t

If the system is subjected to initial displacement and velocity, y, and g,,

“‘the constants of Eq. (2.22) are determined by substituting ¢ = 0 into
- that equation and its derivative as follows:

Yo = ¢°[C1 8in (0) + C: cos (0)]
Therefore Ce = 4o

¥ = e P[—(8C, + waCs) sin wgt + (0aCy — BC) cos wal]
%o = €[— (BCy + waCy) sin (0) + (waC1 — BCy) cos (0)]
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Therefore
¢, =Y + B8Ys

wd

The total response resulting from a combination of initial displacement
and velocity is therefore given by

y =e* (?&iﬁ}'@—yf sin wat + ¥, cos wdt) (2.23)
d

The responses due to each of the two initial conditions taken separately
are shown in Fig. 2.11a and b, where it may be observed that the expo-
nential term in Eq. {2.23) with an appropriate multiplier forms a curve
passing through the peaks of the deeaying harmonic motion.

The condition § = « creates a case of special interest. As §— w, the
frequency ws — 0, and hence cos wt -~ 1 and sin wgt — wal. As a result,
Eq. (2.23) reduces to

¥ = eyl + (1 4+ wy) (2.24;

From this equation it is apparent that the motion is no longer periodic,
or in other words, there is no vibration in the usual sense of the word.
As given by Eqg. {2.24), the response to an initial displacement (zero
initial velocity) is as shown in Fig. 2.11¢. Rather than vibrating, the
system merely creeps back to the neutral position,

The amount of damping which removes all vibration as deseribed
above (8 = w) i# known as critical damping. Although this case is of
little importance in itself, the critical coefficient of damping is a con-
venient reference. - For example, observations indicate that typical struc-
tures have between 5 and 10 percent of eritical damping. Since, for
critical damping, :

cﬂf
©“=8=sn
the critical coefficient is given by
Cor = 2Mw = 2 /kM (2.25)

As noted above, damping affects the natural frequency of the system
To illustrate the significance of this effect, consider a system with 10 per-
cent of critical damping, or 8 = 0.1w. The damped frequeney is then

we = Vil — 8 = 4/0.9%? = 0.995uw

which is only slightly different from the undamped natural frequency.
It may be concluded, therefore, that the decrease in natural frequency
due to damping may for practical purposes be ignored.
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Another concept of importance is that of the logarithmic decrement,
defined as the difference between the logarithms of two consecutive peaks
in the free vibration, or identically, the logarithm of the ratio of two
consecutive peaks. An expression for logarithmic decrement may be
obtained by taking the logarithm of two values given by Eq. (2.23), the
first for a time ¢ and the second for a time (¢ + Ty), where T, is the
damped natural period. Thus

yit =1
y(t =t+ Ta)
e
= In BT

— In &% = BT,
g2 (11i ~T = 2—”) (2.26)
[ 5] w

Logarithmic decrement = In

Therefore, if a system had 10 percent of critical damping (8 = 0.1w),
the logarithmic decrement would be 0.2x, which indicates that the ratio
of successive peaks would be e*?, or 1.87. Inverting this quantity, it
could be said that each and every peak would have a value 0.534 times
that of the preceding peak. This is obviously a convenient way to
visualize the effect of damping.

b. Forced Vibration

A peneralized solution for the foreced vibration of a damped system
may be obtained in the same manner as was used for an undamped
system in Sec. 2.3¢. For the damped case, the response due to an element
of impulse is given by (Fig. 2.5)

Fy@ dr _au s o _

My ¢ sin wg(t — 7)
The total response obtained by summing the effects of all elements of
impulse and superimposing the effects of initial conditions is

y=ePf (%% $in wat + ¥, COS (ﬂdt)
d

t oy [ fryers0 sin we = r) dr - (2.27)
We Jo

This equation is comparable with Eq. (2.15) for the undamped system
and is identical when 8 = 0.

Consider now a system initially at rest and subjected to & suddenly
applied constant force #,. The response may be determined by direct
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FIGURE 2.12 Response of damped one-degree system to a sud-
denly applied constant force.

solution of Eq. (2.21) with F(f) = F, or by Eq. (2.27) with i) =1

and is given by

y = % [1 — B (cos wt + gsin wt)] (2.28)

where the difference between w and w; has been ignored. The response

~ indicated by Eq. (2.28) is plotted in Fig. 2.12. It is apparent that this

response is very similar to that due to an initial displacement as shown
in Fig. 2.11a. If the initial displacement y, had been equal to —F,/k,
the only difference would have been a shift in the neutral position by

--an amount equal to Fi/k.

It was stated in Sec. 2.3 that damping had little effect on the first

. peak of response. The validity of that statement may now be investi-
- gated by further consideration of the case just presented. With little
error it may be assumed that the first peak occurs when wf = , for which
- Eq. (2.28) gives

s = 2 (1 4+ el

- Assuming for illustration that 8 = 0.1w (10 percent of critical damping),
- we obtain ym.x = 1.73F1/k. For an undamped system the response
- will be 2F,/k, and hence the reduction due to this amount of damping
I8 13.5 percent. Since the damping assumed is relatively high, this
“percentage effect may be considered an upper limit for most typical

strictures subjected to loads which are fairly rapid in application.
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c. Coulornb Damping

Up to this point we have concentrated our attention on systems with
viscous damping, and will continue to do so hereafter, because this type
is the most commonly assumed for structural analysis. However, in
this particular section a different form, namely, Coulomb, or constant,
damping is considered. This would apply to a system such as shown
in Fig. 2.13, where the mass slides on a surface such that the resistance
to motion is provided by simple friction. The magnitude of this friction
force F; is constant and depends only upon the coefficient of friction
and the weight of the body. However, the direction of the force depends
upon the velocity of the mass, which it always opposes. Thus, for free
vibration, the equation of motion is

Mj+ky+ Fr=0 (2.29)

where the positive sign before F, applies when and only when the velocity
is positive. Because of the changing sign, any solution of Eq. (2.29)
would apply only during a time interval in which the sign of the velocity
remained unchanged.

As an illustration, consider a mass which is given an initial displace-
ment y, with zero initial velocity. During the first half-cycle of response,
the velocity is negative and Eq. (2.29) becomes

Mg+ ky = +F,

Thus the situation under consideration is equivalent to a system with a
suddenly applied constant force and an initial displacement. The
response is therefore the superposition of these two effects as given by
Eqgs. (2.4) and (2.10).

Y =y0003wt+%(1 — co8 wl)

- (y - %) cos at + 71 (2:30)
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FIGURE 2.14- Free vibration with Coulomb damping,.

‘The first negative peak given by Eq. (2.30) is

- (-

. - In the second half-cycle the velocity is positive and the equation of
‘motion is

My+ky= '_Ff

‘The response indicated by this equation is the same as Eq. (2.30) if
the sign of the force term is changed and if time is measured from the
. first negative peak (¢ = r/w), the amplitude of which is taken as the
Jnitial displacement. Thus, for the second half-cyele,

y=(—yo+3%)c05w(t~£)—% (2.31)

‘The next peak (positive) occurs at wf = 2r, and Eq. (2.31) indicates a
isplacement of
. 21!' _ _ F f
TEE Y.

It may now be deduced that successive positive peaks are given by
— (4Fs/k)n, where n is an integer representing the number of complete
cles, or multiples of the natural period. The complete response is
own in Fig. 2.14, where the damping envelope is formed by a pair of

ight lines, and each half-cycle is a pure cosine function. The response
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is completely damped out at ¢ = (kT/4F,)y,, where T iz the natural
period.

2.5 Response to a Pulsating Force

In this section we shall consider the classical solution for the response
of a one-degree system to a pulsating foree of the form

F =P, sin0t (2.32)

The primary reason for interest in this case is the fact that Eq. (2.32)
may represent the dynamic force applied by a rotating machine to its
support. The slightest imbalance of the rotating part produces this
type of force. F, is proportional to the unbalanced weight, and @ is the
frequency, or speed, of the machine. Consideration of this problem
will infroduce the concept of resonance, traditionally a matter of interest
to engineers, which oceurs when the natural frequency of the supporting
structure is close to the frequency of the machine.

a. Undamped System with Sinusoidal Force

For an undamped one-degree system subjected to a sinusoidal forcing
function [Eq. (2.32)] of indefinite duration, the equation of motion is

Mji4ky =F,sin (2.33)

The solution is of the form
F 1 gin Qf

y=c13inwt+czcoswt+ﬂm

where « is the natural frequency of the system. If the system starts
at rest, the constants are determined by the following:

%o = 0 = Cy sin {(0) + C; cos (0) + % jzm_((gz
ya =0 = Clw o8 (O) - 020’ sin (0) + F———ﬂlds'l :;)S_.((:z)z

Solving for €y and C, and substituting in the general solution, we obtain
the final result as

F, { sin U 1 sin wf
- (s - 8 et o
1 . Q.
= - = 2.34b
or DLF = 7ah) [sm ot S fin mt] ( }

It may be observed that the response consists of two parts, the free part,
having the natural frequency of the system, and the forced part, having
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FIGURE 2.15 Response to sinuseidal force in terms of dynamic
load factor. Q = 2.

he frequency of the forcing function. A typical response is shown in
- Fig. 2.15, where the free and forced parts are separated,

" The maximum DLF can be determined by differentiating and setting
equal to zero Eq. (2.34b), solving for ., or the time of maximum response,
and  substituting the latter back into Eq. (2.34b). Mathemadtically,
this procedure is rather difficult, but by plotting the free and forced
sine functions separately, one can at least estimate the maximum DLF.
An upper limit, which for practical purposes is sufficiently close to the
actual value, may be obtained by assuming, in Eq. (2.34b), that at some
me sin 2f =1 and sin ot = —1. Substitution of these numerical
alues into Eq. (2.34b) leads directly to

(DLF)ax = 1

7 2:35)
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FIGURE 2.16 Maximum dynamic load factor for sinusoidal load
F, sin Qf, undamped systems.

This expression is plotied in Fig. 2.16 as the dashed line, and it is noted
that the maximum response so determined contains both the free and
forced parts.

For practical applications, Eq. (2.35} overestimates the maximum
response, since even a small amount of damping quickly eliminates the
free vibration. Qur concern here being with a continuing state of vibra-
tion rather than with the first few cycles, it is reasonable to assume that
the free vibration has been completely damped out. If the free term is
removed from Eq. (2.34F), the maximum response obviously. oceurs
when sin Qf = 1, and is given by

1

—w7 (2.36)

(DLF)pax = |

This solution implies that the damping is so small that the forced vibra-
tion i not affected even though the free part is completely eliminated.
More detailed consideration of damping is given in Sec. 2.5b. Equation
(2.36) is also plotted in Fig. 2.16. This solution is often referred to as
the steady-state response, while that including the free part is the transient
response.

In Fig. 2.16 it may be observed that, for either of the solutions given,
{DLF)max approaches unity as @/w — 0 and approaches zero as @/w — .
Physically, this simply means that, if © is relatively small, the load pul-
sates very slowly and the mass of the systems ‘‘rides’” along without
vibration about the neutral position corresponding to the instantaneous
load value. In other words, the effect is the same as for a static load.
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“On the other hand, if @ is relatively very large, the mass cannot follow
the rapid fluctuations in load and simply remains stationary. Therefore
DLF = 0 at all times. ‘

Next consider the condition of resonance which occurs when @ = .
‘As indicated in Fig. 2.16, this situation results in very large displacements,
which theoretically become infinite if @ = » [Egs. (2.35) and (2.36)].
Actually, this is an oversimplifieation, as will now be demonstrated.

If in Eqgs. (2.34) Q is made equal to w, the result is ¥ = 0/0, or in other
_words, the response is indeterminate. The displacement can, however,
be obtained by the application of L'Hospital’s rule, which states that the
limit of Bq. (2.34b) as @ — « 1s the derivative of the term in brackets
with respect to @ divided by the same derivative of the term in paren-
‘theses. Thus

_ tcosQf — (1/w) sin wt
(DLF)th—-u - —29/(.02

With @ = «, this becomes
{(DLF)o_, = }4(sin wf — i cos wi) (2.37)

From the last equation it is apparent that DLT does indeed become
“infinite at resonance, but only after an infinite time. Equations (2.35)
and (2.36) are therefore valid when € = w, but only after many cycles
_of vibration. It should be noted, however, that “many” cyecles may
-oceur in a short period of absolute time.

- In practice, exact resonance does not really occur, because systems
‘are never completely linear. As distortions become large, the charac-
teristics of the system change because of plastic deformation and other
‘effects. The question as to whether displacements become infinite is
‘of course of academic interest only. The important engineering con-
clusion is that, at or near resonance, the deflections of the structure
.become very large and hence intolerable.

- It is sometimes of interest to determine the amplitude of response after
8 limited number of cycles of pulsating load at resonant frequency.
Equations (2.34) cannot be used for this purpose since it is indeterminate
-at this point. However, we may obtain the response by the application
cof Eq. (2.37). Limiting the solution to peak values, we first obtain the
times of peak responses by maximizing DLF as follows:

% {(DLF) g = 0 = 24(w cos wt 4 @ gin wf — @ cos wi)

“Therefore

sinwi = 0 wh =m 2m, 3m, . . .
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FIGURE 2.17 Initial stage of response to sinusoidal load, ¥, sin 1,
at resonance.

Substituting these values of wt in Eq. (2.37), we find

(DLF) max, 0o = Y50, — 20, 3w, — . . )
H{DLF)max, 0-e| = Yonx n=1223, ... (2.38)

where n is the number of half-cycles after the beginning of response.
Equation {2.38) states that the maximum deftection of an undamped
one-degree system subjected to sinusoidal loading is #/2 times the static
deflection F./k after 14 cycle of loading, = times y,; after 1 eycle, 3x/2
times -y, after 114 cycles, etc. From the above discussion it may be
deduced that the initial stages of response to resonant sinusoidal loading
are as shown in Fig. 2.17.

b. Damped System with Sinusoidal Force

In this case the equation of motion is
Mg+ by + ey = Fysin {2.39)
for which the solution is of the form

y = e P{C, sin wgt + C; cos wyt)
(FI/k){(l — 9%/w?) sin U — 2(8Q/w?) cos 0]

T = 97 + 4(80/w?) (2.40a)
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FIGURE 2.18 Maximum dynamic load factor for sinusoidal load,
F| sin 4, damped systems.

where 8 = ¢/2M, and wg = 4/w? — B%, the natural frequency of the
damped system.® As discussed previously, the contribution of the free
part becomes negligible after a few cycles of response, and therefore we
need consider only the steady-state, or forced, part of the response given
by the second term in Eq. (2.40g). This term may be rewritten as

_ (B/RBI(L — 9%/?)? + 4(82/w?)?]% sin (2t + 6)
T~ /) + 482/

(2.40D)
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where 8 is merely a phase angle. It is apparent that this expression is a
maximum when the sine is unity, and therefore

1
V(1 = Q¥ /w?)? + 4(80/u)?

(DLF)max = (2.41)

The last expression is often called the dynamic magnification factor, and
is plotted in Fig. 2.18 for various values of 8/w, which is the ratio of
actual to critical damping.

It is apparent in Fig. 2.18 that, even with small damping, theoretically
infinite amplitudes do not occur at resonance. In the extreme case of
critical damping (8/w = 1), the maximum resonant deflection is only
one-half the static deflection. The curve shown for zero damping is
of course the same as that shown in Fig. 2.16 for forced vibration only.
As a further simplification, the following may be derived from Eq. (2.41)
for the resonant condition:

el
2p
A development such as that leading to Eq. (2.37) could also be shown

for the damped case, thus indicating that the maximums given by
Eq. (2.42) are attained only after many eycles of vibration.

(DLF)mnx.ﬂ—u = (2.42)

¢. Undamped System with Step Force

It should be emphasized that a sinusoidal forcing function is not a
requirement for large displacements near resonance. For example, con-
sider the alternating step force shown in Fig. 2.19, which has the same
period as the responding system. To investigate the response, we
proceed as follows, recognizing that, for a suddenly applied constant force,
¥ = (F1/k)(1 — cos wt), and for an initial displacement, y = y, cos wi.
In the first half-cycle,

yz%(l—-cosm)

Fy

Atmt=1r, y1=2—E- :!]1=0

In the second half-cycle,

yatyl go=0

F—I::cos (of — ) —%[1 — cos (wf ~ )]
At(ﬂt=2‘l’, Yz = —4%

y=2
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FIGURE 2.19 Initial stage of response to alternating step load -at
resonance.

It is therefore apparent that successive peaks (positive or negative)
of the vibration have the displacements

and [{DLF)pmax| = 20 (2.43)

where 7 is the number of half-cycles from the starting point. The
response is plotted in Fig. 2.19. Comparison of Eq. (2.43) with Eq. (2.38)
indicates that, at resonance, the amplitudes resulting from an alternating
gtep force increase even more rapidly than those due to a sinusoidal force.

2.6 Support Motions

An important class of problems is the determination of response due to
movement of the support of the system rather than the application of
external force. Perhaps the foremost example is the analysis and design
of structures for earthquake effects. It is shown below that, with only
slight modification, the preceding solutions for applied forces can also
be used for the case at hand.

a. Undamped Systems

Sl.lppose ‘that the system shown in Fig. 2.20 is subjected to a support
motion y, defined by y. = y..f(¢), where ., is some arbitrary magnitude
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FIGURE 2.20 One-degree system with support motion.

of support displacement and f(¢) is the time function describing the varia-
tion of y, with time. The equation of motion is

Mi+k(y—y)=0
or Mg+ ky = ky. = ky..f(f) (2.44)

Comparison of Eq. (2.44) with those previously written for external force
functions [F1f{t)] reveals that they are identical, except that F, has been
replaced by ky.. Thus previous solutions are valid if this simple sub-
stitution is made. Tor example, the general solution given by Eq.
(2.14b) becomes

Y = Yo [ot f(r) sin w(t — 7) dr (2.45)

To illustrate the above, we consider a system the support of which
is displaced suddenly by an amount y.,, and then remains fixed in tl'mt
position, This imposed condition corresponds to a suddenly applied
constant force, and the response may be obtained by substituting ky..
for 1 in Eq. (2.10). This produces

i = Yl — cos wt)' (2.46)
for the absolute displacement and
U =Y — Ya = — s COS wi (2.47)

where w ig the relative displacement of the mass with respect to the sup-
port. The forece in the spring is of course ku, and the negative sign ip
Eqg. (2.47) indicates that the spring is initially in compression if y,, is
positive. ‘
As a second example, let the support motion be y, = ., sin @f. Using
the previously given solution for a sinusoidal force, ky,, is substituted
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for Fy in Eq. (2.34a) to obtain

y = yow,,( sin ¥  Q sin ot )
° w! — 02 ww? < 7
= Y{DLF) (2.48)

Since DLF is the same as that expressed by Fq. (2.34b), the maximum

DLF for sinusoidal support motion is also given by Fig. 2.16 without

modification and yn.. = #20(DLF)max. The relative motion, which is
- the same as the spring distortion, may be obtained from Eq. (2.48):

_ o sin ¢ w Sin wt
WEY T Y= Y w? — 0 Qo —

= #..(DLF), (2.49)

where (DLF), is the dynamic load factor for relative dispilacement.
Equation (2.49), together with a econsideration of the discussion of
maximum DLF in Sec. 2.54, leads to the conelusion that Fig. 2.16 can
‘also be used to obtain maximum relative displacement if 2 and w are
simply interchanged. Thus, at the extreme limits, we conclude:

Asgﬂo,y=y,andu=0

Asgﬂ 0, y=0andu = —y,

This applies throughout the response, as well as to the maximum values.
From the above discussion it should be apparent that the charts of
{DLF}pqx for various forcing functions, previously given (Figs. 2.7 t0 2.9),
apply equally well to the cases of support motion having the same time
functions; that is, Y = YaolDLF)ax. However, this fact is of limited
.usefulness since the maximum spring forece which is proportional to
relative displacement cannot be obtained directly in this manner.

An alternative approach which is often useful involves representation
of the input in terms of support acceleration rather than displacement.
For this purpose it is convenient to change the variable to the relative
displacement of the mass with respect to the support, which is identified
by w =y —y, Sinces =y — g, Eq. (2.44) becomes

M+ 3 + ku = 0 |
or Mi+ku = —M = —Mioofalt) (2.50)

where f,(t} is the time function for support acceleration, and ., is some
arbitrary (usually maximum) value of support acceleration. This equa-
tion is identical with those for forcing functions if ¥, is replaced by — M.
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Therefore the general solution for the relative motion is
e [ty
w= = 1 re) sinw(t 1) dr (2.51)

if it is assumed that the initial support velocity is zero. Thus results
given elsewhere for external forcing functions may be used to determine
directly relative distortions due to support motions provided that the
latter are given in terms of acceleration. Examples of this procedure
are to be found in Chap. 6.

b. Damped Systems

When damping is involved, it is generally more convenient to employ
the approach represented by Eq. (2.50), in which the support motion
is specified in terms of acceleration rather than displacement. This is
true because the damping force is usually proportional to relative rather
than absolute velocity. If damping is included, Eq. (2.50) becomes

Mi + ku + ctv = — My, = —Mijufa(l) (2.52)

The general solution obtained by replacing y.. by —M../k in Eq. (2.27)
is therefore

w = — 'yﬂ,ftfﬂ(f)e_p(tu-r) Sln wd(t — 'r) dT (2.53)
wg Jo

if the system starts at rest (ie., if u, = g, = 0).

The relative response to sinusoidal support motion (y, = f,, sin Qf)
may be obtained from Eq. (2.40b) if F; is replaced by — Mg, since
(&) = fa(f). Thus the steady-state response is

u = Ge/ )1 — 0*/?)? 4 4(82/w?)%* sin (2 + 6)

T — @/a)" + 480/ 254
and the maximum relative response is given by
= U 1 .
Ueex = 2\ [0 = /) F 4(59/&)21”] (2.55)

Because of the similarity between the last equation and Eq. (2.41), it is

apparent that Fig. 2.18 is a plot of the bracketed term in Eq. (2.55). -

Thus the maximum relative displacement, and hence the maximum spring
force kumax, can be obtained by Fig. 2.18 and Eq. (2.55); that is,

(Wmaz = (Fro/w?) (DLF)max

where (DLF)...x is given by Fig. 2.18.
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If the support motion cannot be expressed in terms of acceleration
nd if damping is to be considered, it is necessary to include as input
~both displacement and velocity. For a damped system, FEq. (2.44)
~becomes

Mij+kly—y)+cg—9)=0 .
or Mg+ ky + ey = ky, + ey, (2.56)

Additional discussion of response to support motion is given in Chap. 6
- in connection with analysis for earthquake.

- 2.7 Elasto-plastic Systems

Consider the single-degree undamped system in Fig. 2.21a, which is
~assumed to have the bilinear resistance function shown in Fig. 2.21b.
- A rigorous solution for the response due to a suddenly applied, constant
load is given below. Since there are two discontinuities in the response,
. this involves three separate stages: (1) the clastic response up to the
- elastic limit y., (2) the plastic response between the elastic limit and the
.maximum displacement, and (3) rebound, or the elastic response which
.-oceurs after the maximum has been attained and the displacement begins
“‘to decrease. In the determination of displacements for stages 2 and 3,
- the initial conditions are the final displacement and velocity of the pre-

_ o
\ 1
lFtr)

(a)

R i)
Fmf—— A

I
|
|
|
1
Jer I t

FIGURE 2.21 Elasto-plastic system.
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ceding stage. If the applied foree were not constant, additional stages,
one for each force discontinuity, would have to be included. Obviously,
this 15 a very laborious process, and except in the most simple cases,
one would be better advised to use numerical analysis as illustrated in
See. 1.5.

For the example indicated by Fig. 2.21, with zero initial displacement
and velocity, the response in the first stage is given by (See. 2.2¢)

¥ < Ya: Y = yu{l — cos wi)

§ = Ypuw Sin wi

(2.57a)
(2.57b)

where y. = Fi/k, and w = /E/M. The time at which Ya i reached,
te, may be obtained from Eq. (2.57a):

cos wig = 1 — Yo
yn

and 8in wty = /1 — cos? wihy

Proceeding to the second stage and letting t, = ¢ — ¢,;, we have the
initial conditions for this stage:

(2.58)

ya = ysl
y',, = Yaw SiI]. (dt,; (259)
and the equation of motion
M?J + Rm = Fl
The solution by direct integration is
1
¥ = m (F]_ _— .R,,.)lﬁ2 + Cltl + Cg (260)

Making use of the initial conditions [Egs. (2.59)] at ¢, = 0 to solve for

€y and C; and substituting back into Eq. (2.60), we obtain the final
solution for this stage:

1 .
Yet S Yy -<.. Ym: Y = W (FI - Rm)tlz + Yawoly 81D wigy - Yai (261)

By differentiating Eq. (2.61) and setting the result equal to zero, the
time of maximum response is obtained as

M Wi

tlm = m sin wt,z (2.62)

The maximum displacement y,, is obtained by substituting f;. into
Eq. (2.61).

For the third and final stage, one could proceed as above, using a
suitable equation of motion with initial conditions from the second stage.
However, an easier procedure is to make use of some obvious facts regard-
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FIGURE 2.22 Example. Response of elasto-plastic one-degree structure to
suddenly applied constant force.

. ing the response, which were discussed in Sec. 1.5. This stage consists
of a residual vibration, which is of course elastic, or harmonic. When
the mass is in its neutral position, the spring force is equal to the applied
load 7. Therefore the amplitude of vibration, or the amount by which
the deflection must decrease below ¥, to reach the ncutral position, is
{Bm — F1)/k. The situation is equivalent to an initial displacement
- of this amount on a system whose neutral position is Ym — (Bm — F1}/E.
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FIGURE 2.23 Maximum response of elasto-plastic one-degree systems
(undamped) due to rectangular load pulses. (U.8. Army Corps of
Engineers,10)

Therefore the response is given by
Yy = (ym = Rm ; FI)"“RM ; FICOBth

where t; =t — {1 — ta.

The complete response is therefore given by Eqs. (2.57a), (2.61), and
(2.63), and the times at the interior boundaries of the three stages by
Eqs. (2.58) and (2.62).

To illustrate rigorous elasto-plastic analysis, the. response of the
stmple steel beam shown in Fig. 2.22 will be investigated. The elastic
properties of the system were determined in Sec. 2.3¢, but in addition
to these, the maximum, or plastic, resistance is now needed. The total

(2.63)
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‘maximum resistance is given by
4Mp 4 X 3320 .
B.r = = = 55.3 kips
mr = 20 X 12 P

here Mp is the ultimate bending moment (rectangular stress bloek)
ased on a yield-point stress of 33 ksi. Since the beam supports a dead
eight of 10 kips, the maximum force available to resist the dynamic
load is

R, = 55.3 — 10 = 45.3 kips

The resistance function may be assumed to be bilinear, as indieated in
' Fig. 2.22. The above determination of resistance of course implies that
“lateral buckling of the beam is prevented by some means.
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FIGURE 2.24 Maximum response of elasto-plastic one-degree systems
(undamped) due to triangular load pulses with zero rige time.
(U.8. Army Corps of Engineers.'®)

We wish to determine the complete response due to a suddenly applied,
constant force of 30 kips. The parameters required for analysis of the
system are as follows:

k = 83.4 kips/in.
M = 0.0259 kip-see?/in.
T = 0.111 sec; w = 56.8 rad/sec
K, = 453 kips
Ya = Rn/k = 0.543 in.
Yu = F1/k = 0.360 in.

It is apparent that the response will reach the plastic range since

R, < 2F,.

t <t

PIGURE 2.24 (Continued)
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The total solution based on the equations derived above

"i8 as follows:

Y

cos 56.8t,; =

56.8t,
sin wly = 0.861

tlm

0.360(1 — cos 56.81) Eq. (2.57a)
1
2.10 rad ta = 0.0371 sec

0.543

- m = —0.508 Eq. (2.58)

—2956,2 + 17.66; + 0.543  Eq. (2.61)
0.0298 sec Eq. (2.62)
tm = tsl + tIm = 0.0669 80
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FIGURE 2.25 Maximum response of elasto-plastic one-degree systems (undamped)
due to constant force with finite rise time.

Therefore

I

—205(0.0208) + 17.6(0.0298) + 0.543
= 0.806 in.

Ym

y = 0.622 + 0.184 cos 56.81;
t, = t — 0.0669

Eq. (2.63)

The complete solution given by the foregoing is shown in Fig. 2.22.

2.8 Charted Solutions for Maximum Response of One-degree Undamped
Elasto-plastic Systems

Because the analysis of elasto-plastic systems is cumbersome, it is con-
venient to make use of charts giving the maximum response. Usually,
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FIGURE 2.25 (Conlinued)

he structural designer is interested only in the maximum displacement,
and therefore such charts need give only that quantity rather than the
omplete response as a funetion of time. Presented in this section are
- response charts for four load-time functions. It will be found in practice
hat many actual loading conditions can be approximated by one of
hese simiple functions.
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FIGURE 2.26 Maximum response of elasto-plastic one-degree systems (undamped)
due to equilateral triangular load pulses.

a. Nondimensional Equations of Motion

The procedure given in Sec. 2.7 may be used to derive the desired
charts, but for plotting purposes it is convenient to nondimensionalize
the parameters. 1In the basic equation of elastic motion,

My + ky = Filf(#)]
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we transform the variables by letting ¢ = ¢/T and 5 = ¥/ Yo
wo dz'y _ Yal dz"’l _ Yer .
Then V=T Tige =T
and the equation of motion becomes
My .,
'*71-%1 i+ kyam = Fuf(£)]
or since kyu = R,, and T? = 4x2M /k,
1 . F
gt =5 ) (2.64)

In the plastic range the term ky becomes constant with a value of B,.
If the same substitutions as those leading to Eq. (2.64) are made, the
equation of motion for this range becomes

it 1= (2.65)
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Inspection of Eqgs. (2.64) and (2.65) reveals that, in order to obtain
the response in terms of the parameter », one need only know the ratio
F/R, and the load-time funetion in terms of the parameter ¢, In addi-
tion to the variable itself, the latter involves only the ratio t;/ 7T, where #;
is the duration or some other time value characterizing the loading (see
below). Thus the two parameters F\/R,, and /T are sufficient for a
complete solution (if the system-starts at rest and there is no damping).

b. Maximum-response Charts

The charts shown in Figs. 2.23 to 2.26 inclusive are based upon numeri-
cal solutions of Eqs. (2.64) and (2.65). The results thus provided are
for undamped one-degree systems with bilinear resistance functions and
without initial motion. In the case of the rectangular pulse, f(£) is
unity up to £ = ¢/ 7" and zero thereafter. For the triangular pulse
with zero rise time, f(£) = 1 — £(T/ts) up to £ = £4/T and then zero.
When the force is constant but with finite rise time, f(£) = £(T/f.) up
to £ = {,/T and unity at later times. For the friangular function of
Fig. 2.26, f(£) = £2T/t)upto £ = t./2T, followed by f(£) = 2 — (2T /1)
up to £ = {a/ T and zero thereafter. The charts were constructed by
inserting these expressions for f(£) info Kqgs. (2.64) and (2.65) and obtain-
ing the maximum displacement by numerical integration for diserete
values of the parameters Fi/ K. and /7 or §,/T.

The values provided by the charts are the maximum nondimensional
displacement, nuax = Ym/Ya = g, and the nondimensional time of maxi-
mum displacement, Enay = in/lz OF tn/t,.. It should be noted that the
bottom curve in each case (E./F; = 2) represents completely elastic
response. If (R./F:) > 2, the elastic-response charts (Figs. 2.7 to 2.9)
should be used.

c. Example

To illustrate use of the charts presented above, let the beam cited in
Sec. 2.7 (Fig. 2.22) be subjected to a suddenly applied triangular-pulse
loading defined by F, = 40 kips and ¢ = 0.2 sec. The maximum mid-
span deflection of the beam and the time of that deflection are obtained
from Fig. 2.24 as follows:

R, 453 _ e 02
R R R T
From Fig. 2.24aq, w=20
From Tig. 2.24b, b~ 036
o

Therefore
Ym = plha = 2.0 X 0.543 = 1.09 in.

fn = (z—"‘) ta = 0.36 X 0.2 = 0.077 sec
d
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As will be illustrated in Chaps. 5 and 7, charts such as Figs. 2.23 to
2..26 are 'ext.;remely useful for design purposes, provided that the load-
tllm(_e variation can be approximated by one of these simple funetions
Similar charts can be developed for other time functions if the shapes‘
are completely defined by two parameters, that is, 7, and 1,.

Problems

2.1 Write the expressions for the natural fre i
rite ¢ quency and natural period of
shown in Fig. 2.27. Both the beam and t . e ystom

r he spring may be assumed maasl
rotational inertia may be neglected. oo and

N

£r

1 W T
FIGURE 2.27 Problems 2.1, 2.2, 2.5, 2.6, 2.8, and 4

2
2.9. - L {

2.2 Fo_r th.e gystem in Prob. 2.1, { = 60 in., EI = 108 b-in.?, W = 2000 Ib, and
k = 2kipa/in. If the weight has a displacement of 0.5 in. and a velocity of 10 in. /sec

Zt ¢t = 0, what is the displacement and velocity at £ = 1 sec? Assume no damping.
nawer ’

y = +0.62 in.
¥ = +3.2in./sec

2.3 Compute the natural frequency in the horizontal mode of the gteel rigid frame

shown in Fig. 2.28. The horizontal girder may be assumed infinitely rigid, and the
mass of the columns may be neglected.
Answer

w = 9.5 rad /sec

30 kips I—’y

FIGURE 2.28 Problems 2.3, 2.4, and 2.7

2.4 Rep'ea.t Prob. 2.3, taking into account the girder flexibility. The horizontal
member is a steel 18WF50 member.
Answer

w = 9.2 rad /sec
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2.5 The weight of the system given in Prob. 2.2 is subjected to a vertical force.
Compute the displacement at ¢ = 0.3 sec for the following load functions, assuming
no damping: (e) a force of 1000 1b applied suddenly at ¢ =  and removed suddenly
at ¢ = 0.2 gee; () a force of 1000 lb applied suddenly at t = 0 and decreasing linearly
to zero at t = (1.5 sec.

2.6 Using the appropriate charte, determine the maximum displacement and time
of maximum displacement for both load cases of Prob. 2.5.

2.7 The rigid frame of Prob. 2.3 is subjected to a horizontal force applied at the
girder level. The force increases linearly from zero at ¢ = 0 to 4 kips at ¢ = 0.5 sec
and then remains constant. Neglect damping.

a. Compute the horizontal deflection at £ = 0.7 sec.

b. Using the appropriate chart, determine the maximum deflection and the time of
maximum deflection.

Answer
a y = 0.64in.
b. ¥m = 0.74 in.
imn = 0.55 sec

2.8 Repeat Prob. 2.2, assuming that the system has 15 percent of critical damping.
2.9 Repeat Prob. 2.5a, assuming that there is 10 percent of eritical damping.

2.10 TFor the load-time function in Fig. 2.29, derive the expression for DLF as a
function of ¢, w, and ¢; which applies when ¢ > ;.

A \
Y
I
I
]
z

d

F{el, b

~i=
|

FIGURE 2.29 Problem 2.10. Load-time func-
t, sec tion.

2.11 For the dynamic system and load function shown in Fig. 2.30, compute by
rigorous methods and plot the displacement versus time up to ¢ = 0.6 sec.

£=1001b/in.
a
< 150——
= L I t
T W=101b i |
4 0 1 1
l o] 015 030 o045
F(t) Z, sec

FIGURE 2.30 Problem 2.11. Dynamic system and load-
time function.
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2.12 Tt is observed experimentally that the amplitude of free vibration in the fun-
damental mode of a certain structure decreases from 1 to 0.6 in. in 10 cyeles. What
is the percentage of eritical damping?
Anzwer

0.815 percent

2.13 'The sliding block shown in Fig. 2.13 has a natural periqd of 0.5 sec, and the
coefficient of friction between the bloek and surface is 0.05.

a. If the block is given an initial displacement of 1 in., what is the displacement
after 1 cyele of vibration?

b. If the block is given an initial velocity of 10 in./sec, what is the velocity after
1 cycle?
Answer

a. 0.51 in.

b. 3.85 in, /sec

2.1¢ A simple undamped spring-mass system has a natural frequency of 10 rad/sec
and is subjected to a force Fysin Qt. Compute the DLF at £ = 0.4r sec if (a) 2 = 2a,
b)) @ = w,and (¢) @ = 14w. The system starts at rest.

2.15 Repeat Prob. 2.14 for the case of 5 percent of eritical damping,.

2.16 What would be the steady-state maximum DLF for the damped system of
Prob. 2.15 after many cycles of loading?

2.17 The steel rigid frame shown in Fig. 2.31 supports a rotating machine which
exerts a horizental force at the girder level of (1000 sin 112) Ib. Assuming 4 pereent of
critical damping, what is the steady-state amplitude of vibration?
Answer

0.80 in.

10 kips =

EWF 20— 10'

FIGURE 2.31 Problems 2.17 to 2.20. .
2.18 The frame of Fig. 2.31 is subjected to horizontal support motion. Using the
appropriate chart, determine the maximum sbsolute deflection at the top of the frame
due to the support motion shown in Fig. 2.32. Assume no damping.
Ansgwer

¥m = 1.5l in.

FIGURE 2.32 Problem 2.18. Support motion.

2,19 In Prob. 2.18, compute the bending stress in the columns at ¢ = 0.30 sec.
Answer

¢ = 11,800 pai
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2.2¢ In Prob. 2.17, compute the maximum column bending stress due to a continuous
support acceleration given by (50 sin 11¢) in. /sec?.

2.21 For the dynamic system and load function shown in Fig. 2.33, compute the
deflection at t = 0.15 sec.

’,

£=4000 lb/in,
Fm=27001b (net) 2 3000
=
'S
W=10001b
T o
Y l 0 0.5
Flz) ¢, sec
{a) (3)

FIGURE 2.33 Problems 2.21 and 2.22. Dynamic system
and load-time function.

2.22 Using the appropriate chart, determine the maximum deflection and time of
maximum deflection for the system and loading of Fig. 2.33. R, is the available
resistance in excess of the dead-weight spring foree.

2.23 Using the appropriate charts, determine the maximum deflection and the time

of that deflection for the system of Fig. 2.33a and the load functions of Fig. 2.34a
and b.

Flt), b

|

(

0 ] 1
G 075  tsec o o1
(a} (&)

FIGURE 2.34 Problem 2.23. Load-time functions.

3

Lumped-mass
Multidegree Systems

3.1 Iﬁtroduction

The subject of this chapter is the analysis of discrete-parameter systems,
Le., systems consisting of a finite number of lumped masses connected by
springs. The number of degrees of freedom is equal to the number of
independent types of motion possible in the system. Stated differently,
the number of degrees equals the number of independent coordinates
necessary and sufficient to define completely the configuration of the
system. To illustrate, the position of the pendulum shown in Fig. 3.1
could be defined either by y or by 8, but not by both, since the two coordi-
nates are not independent. Therefore it is a one- rather than a two-
degree system. The double pendulum shown in Fig. 3.1b is, on the other
hand, a two-degree system, since two coordinates (for exaraple, y; and y,
or 6; and #,) are required.

It may be stated that, for each degree of freedom, there is an inde-
pendent differential equation of motion. For example, the equations for
the two-degree system shown in Fig. 3.2, obtained by considering the
dynamic equilibrium of the two masses, are

Mg + kyyn — kely: — 1) = F1(d)
Mz + kay: — 1) = Falt)

As a somewhat different example, consider the rigid mass supported
by two springs as shown in Fig. 3.3. Assuming no horizontal motion,
85

(3.1)
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7

FIGURE 3.1 One- and two-degree systems.

there are two independent coordinates, y and 8, and hence it is a two-
degree system. The spring forces are given by k(y + 6d) for small rota-
tions, and the two equations of motion based on vertical and rotational
dynamic equilibrium are

My + 2ky = F(t)
I6 + (2kd?)0 = ML) (3.2)

where I is the mass moment of inertia.

Vi ¥,
I-_J Alt) '_‘z

k1 b

4 —W— My [—=Falt)
2

18] [8] el
(2 (L FLET7IAY. s

Z,

(8]

M ji Al Maiz
-—— —— —-— FE( t)
M1 MZ b
p— Y -—]
i talya=p)  kalpe-n)

rFIGURE 3.2 Two-degree system—dynamie equilibrium.
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Fleh

FIGURE 3.3 Uncoupled two-degree system. T ITTTTTA 7

An important distinetion may be made between Eqs. (3.1) and (3.2).
In the former, y, and y, appear in both equations, and the pair are said
to be coupied. Determination of the response of the system therefore
involves the simultaneous solution of two equations. Equations (3.2) are,
on the other hand, uncoupled, and each of the two equations may be solved
separately. The analysis of the system represented by the latter equa-
tions may therefore be treated as that for two independent one-degree
systems. 1t should also be apparent from the above that the number of
degrees of freedom is not necessarily equal to the number of lumped
INASSES.

Our consideration herein will be restricted to planar systems for which
there can be no more than three degrees of freedom per mass. In the
most general case of three-dimensional motion, six coordinates are required
to define the position of each mass.

The springs in a lumped-mass system may be arranged in different ways,
depending upon the characteristics of the structure. For example, if in
the three-story building frame of Fig. 3.4a, the girder rigidity approaches
infinity, the system (considering only horizontal motion) may be repre-
sented as shown in Fig. 3.4b. On the other hand, if the girders are flex-
ible, a proper representation is as shown in Fig. 3.4¢c. The reason for
this difference may be understood if one imagines that the third floor is
displaced horizontally while the second floor is held fixed. With rigid
girders, no force is transmitted to the first floor, and therefore no spring
is needed between the third and first. With flexible girders, however, the
joints at the second level would rotate, the columns below would be dis-
torted, and forces would therefore be applied to the first floor, causing it
to displace. This interaction is represented in Fig. 3.4¢ by the spring k.,
and the same reasoning accounts for springs ks and ks. The system in
Fig. 3.4b is said to be close-coupled, and that in Fig. 3.4¢, far-coupled.
Although the number of springs affects the equations of motion, both
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FIGURE 3.4 Close- and far-coupled systems.

gystems have three degrees of freedom and the methods of analysis are
identical.

Beams or other elements with significant mass at more than one point
are always far-coupled systems. For example, the beam with two mass
concentrations as shown in Fig. 3.5a could be represented as indicated in
Fig. 3.5b. 'This is proper since a deflection at mass 1 (but not at mass 2)
would cause a reaction at support 3. This is accounted for by spring k.

It should be emphasized that lumped-mass systems are not idealistic
and analyses of such systems are not intended to be mere academic
exercises. Many structures such as the frame in Fig. 3.4a have essen-
tially lumped masses since the weight of the columns and walls is often
negligible compared with that of the floors. Hence an analysis based on
the systems shown in Fig. 3.4a or b 18 essentially exact. Truly distrib-
uted mass systems, e.g., a beam with uniformly distributed weight, have
an infinite number of degrees of freedom. However, as will be seen in
Chap. 4, any practical analysis deals with a limited number of degrees
which can be represented by a lumped-mass-spring system. Thus the
methods of analysis given in this chapter have a wide range of application.

It is appropriate at this point to introduce tentatively the concept of
normal modes (or natural modes) of vibration. = A system has exactly the
same number of normal modes as degrees of freedom. Associated with
each mode is a natural frequency and a characteristic shape. The distin-
guishing feature of a normal mode is that the system could, under certain
circumstances, vibrate freely in that mode alone, and during such vibra-
tion the ratio of the displacements of any two masses is constant with
time. These ratios define the characteristic shape of the mode. An
extremely important fact, which is the basis of multidegree analysis, is
that the complete motion of the system may be obtained by superimposing
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.= #, M, =3
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FIGURE 3.5 Beam with lumped masses
——equivalent mass-spring system.

{8

the independent motions of the individual modes. More complete defi-
nition and the great significance of normal modes will unfold in later
gections of this chapter.

The next four sections deal with the determination of natural fre-
quencies and characteristic shapes of normal modes. This emphasis is
deliberate for two reasons: (1) such determination must be the first step
in the dynamic analysis of the system; and (2) an experienced analyst
can deduce a great deal concerning the behavior of a structure from
knowledge of its normal modes.

3.2 Direct Determination of Natural Frequencies

The equations of motion for a system having N masses and N degrees of
freedom but no external forces have the following form:

Mg+ kugr+ ke + - - - +kivyy =0

Maoggs + kayr + kagye + - - - 4+ kavyn = 0

......................... (3.3)
Mytiv + kxn + kwas + - - - + kyyyw =0

where the k's are stiffness coefficients, which are spring constants or com-
binations thereof, and the 3’s are the displacements of the lumped masses.*

* Matrix notation iz obviously convenient when-dealing with simultanecus equations
of motion. However, it is not used in this text because it is believed to obscure the

physical meaning of equations, and hence is not advisable for introductory material.
A matrix formulation of the modal method of analysis is given in the Appendix.
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It will first be shown that vibration in a normal mode must always be
harmonic. As stated in the previous section, during vibration in a single
mode, the displacements of the several masses are always in the same
proportion; i.e., all possible positions are geometrically similar. This may
be indicated by

i = af (), y2 = asf(®), . . ., yv = anf(t) (3.4)
where f(t) is the same time function in each case, and the o’s are the
amplitudes of the individual motions. Substituting into Eqgs. (3.3),

M]G,J(t) + kn(hf(t) + k;gazf(t) "I- st + kmaNf(t =0
Mgaz.f(t) + kma]f(t) '+" kzgazf(t) +‘ - 4 ]CzNaNf(f =10

Myaxf(t) + kwaif () + bweasf) + - - - + kywnanf(t) = 0

e

where f(t) is the second derivative of f(t) with respect to time. Rearrang-
ing these last equations,

J?_(Q - —kuar — kupas — - - - — Evay

f(t) Maa,

o _ —kaar — kats — - - - — koo

f(i) B Ma, (3'5)

th) Myan

Since the left sides of Eqs. (3.5) are all identical, the right sides must be
equal to the same constant, which will be identified by —«?. Thus all
equations may be written as

o _
o
or Jo) + @@t =0 (3.6)
Equation (3.6), when solved, yields
f(t) = Cysin wt + C; cos wt = (3 8in w(l + ) (3.7

Thus it has been shown that motion as defined by Eq. (3.4) is possible
and, furthermore, that such motion is harmonic with a natural frequency
of w. This conclusion applies to any one of the N normal modes of the
system. Note that all masses vibrate in phase with the same natural
frequency.
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To determine the natural frequency of the several modes, Eqs. (3.5)
may be used. Substituting the constant —w? for the left-hand sides and
rearranging,

(k11 — Mio¥ay + kisas + - - + kivay = 0
ot G Mathd o ke =0 gy
kwviay + kwsae + « + - o+ (kyy — Myo?ay =0

These equations can be used to solve for relative values of the amplitudes
a1 - . . ay. Recalling Cramer’s rule for solving such equations, we may
state that nontrivial values of the amplitudes exist only if the determinant
of the coefficients of @ is equal to zero, because the equations are homo-
geneous; ie., the right sides are zero. Since free vibration must be pos-
sible in a normal mode, we write

{(knn — Mie?) ks o by
AT I A BT
fear Ens (kvw — Myw?)

All ¥'s are presumably known, and expansion of this determinant leads
to a frequency equation which can be solved for w. There is one real root
for each normal mode, and hence N natural frequencies are obtained.

This procedure for the determination of natural frequencies is illus-
trated by an example involving a two-degree system, in the following
paragraph. It will become apparent that solution of the frequency equa-
tion becomes extremely cumbersome as the number of modes increases.
For this reason other procedures have been devised. An iterative method
is given in Sec. 3.4, and an approximate method in Sec. 3.5.

In mathematical terms the problem discussed above is known as a
characteristic-value problem and the quantities w® as characteristic values,
or eigenvalues. The solution of this problem is of importance in many
engineering fields, and several methods for the determination and manipu-
lation of eigenvalues are to be found in the literature. 1 Attention herein
will be focused on those methods which seem most useful for the type of
problems considered.

a. Two-degree Systems

The equations of free motion for the far-coupled undamped two-degree
gystem shown in Fig. 3.6 are

Mgy + ks — koly: — 1) = 0

3.10
Magjs + ko(ys — 1) + ksy. = 0 ( )
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As indicated by Eq. (3.7), if the system is vibrating in a normal mode, the
two displacements are harmonic and in phase, and may be expressed by

Y1 = a1 8in w(l + a) = —mw?sin w(t + o)
Y2 a2 8in wit + a) P2 = —aw?sin w(f + )

fl

As an slternative to the direct use of Eqs. (3.9) for the determination of
natural frequencies, ‘we may substitute these expressions into Egs. (3.10)
to obtain

[—Miw?ay + kray ~ ka(as — a1)] 8in w(t + ) = 0

[—Mz(.dzaz + kz(az —_ a]_) + kaﬂg] sin w(t + (x) =0

or (—'lez + k -+ kz)al + (—'kz)ﬂz =0 (3 11)

(‘—kz)al + ("‘Mzwz + k2 + ka)az =0 '

In order for the amplitudes to have any values other than zero (a neces-

sary condition for a normal mode), the determinant of the coefficients
must be equal to zero.

(—lez + k], + kz) (—k2)

(~ks) (—My? + ko + kg | = ©

Expanding this determinant gives the equation

(—=Muw® + k1 + ko) (= Maw? + ks + ka) — (ks)? = 0

kit ke | ka4 Fy ke(ky + ka) + kikis _
or (w?)? ( 78 + i, )w” + T =0 (3.12)

This is the frequency equation for the two-degree system in Fig. 3.6, The
two real roots are the squares of the natural frequencies of the two normal
modes.
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To illustrate further, suppose that all three spring constants are equal
to k£ and both masses equal to M. Equation (3.12) then becomes

(0®)? — (%) w? + ?Fk: =0

The two roots of this equation are
-
N TANM

[k
wﬁ = 11% Wy = 173 ﬂ_f

These are the natural circular frequencies of the two normal modes. The
smaller frequency i corresponds to the fundamental, or first, mede, while
wy is the frequency of the second mode.

il
| &=

=Y

QI ey

3.3 Characteristic Shapes

Having the natural frequencies of the multidegree system represented by
Egs. (3.3), the characteristic shapes of the modes may be obtained by
the use of Egs. (3.8). If the value of w? for & particular mode is substi-
tuted into these N equations, there are then exactly N unknowns, namely,
the characteristic amplitudes a, - - - ax of that mode. Since the right
sides of Eqs. (3.8) are zero, unique values of the a’s are not obtained.
However, it is possible to obtain the relative values of all amplitudes, or
in other words, the ratio of any two. If an arbitrary value is given one
amplitude, all others are then fixed in magnitude. A set of such arbi-
trary amplitudes defines the characteristic shape, since the latter is not
dependent upon absolute values of amplitude. In mathematical terms,
a set of modal amplitudes is known as a characleristic vector.

It is not surprising that urnique values of the characteristic amplitudes
are unobtainable. We are here dealing with free vibration, the cause of
which has not been defined by either initial conditions or foreing function,
The important point is that the amplitudes of a normal mode are always
in the same proportion; i.e., the shape is maintained, regardless of the
cause of the vibration.

To illustrate the above, consider again the two-degree system of Sec.
3.2¢ and Fig. 3.6, for which the natural frequencies were found to be
Vk/M and 1.73 \/k/M. Since the k¥’s were taken to be equals, as were
the M’s, Egs. (3.11) become

(—Mw® + 2k)a;y + (—k)a; = 0
(—k)ar + (—Mw® + 2k)as = 0



94 Introduction to Structural Dynamics

Substituting «,, the frequency of the first mode, into the first eguation
yields

(—'I{} + 2}1{:)0‘,11 + (—k)an =0
Therefore ain = an

which defines the characteristic shape of the first mode. The same result
would have been obtained by substitution into the second equation. The
notation adopted is that the first subscript on the a indicates the mass,
or point on the structure at which the amplitude oceurs, and the second
subseript designates the mode. Substituting w, into either equation
yields

(—3k + 2k)ar2 + (—k)aw = 0

Therefore Q12 = —dagy

which defines the characteristic shape of the second mode.  If it is desired
to assign arbitrary values to the amplitudes, the two modal shapes could
be indicated by

an = +1 an = +1
a2 = +1 ap = —1

The two characteristic shapes, i.e., the motions associated with the
normal modes, are indicated in Fig. 3.7. In the first mode the two masses
move in the same direction and by the same amount. In the second mode
they move by the same amount but in opposite directions. In both cases
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FIGURE 3.7 Characteristic shapes of normal modes.
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the motions of the two masses are in phase; i.e., the maximum displace-
ments are attained simultaneously. The neutral point of the vibration
is the static dead-load position, and the a’s are in reality amplitudes of
the total motion. It should be intuitively obvious that the type of dis-
tortion associated with the first mode should, as we have shown, have a
lower natural frequency than that associated with the second mode.

a. Orthogonality

An extremely important property of normal modes is the fact that any
two modes are orthogonal. This may be expressed as follows:

7
Z Mantm =0 (3.13a)
r=1

where n and m identify any two normal modes of the system, and the
subseript » refers to the rth mass out of a total of J masses. The sum-
mation therefore indicates a series with one term for each mass of the

‘system. The proof of Eq. (3.13a) is given below.*

When the system is vibrating in the nth mode and has attained the
maximum amplitude, the masses could be placed in static equilibrium by
the application of inertia forces equal to Maw,2. This statement, which
is not limited to maximum displacement but could be made for any modal
position, is merely D’Alembert’s principle of dynamic equilibrium. For
the nth mode and the rth mass, the inertia force would be identified by
M.a,20,%.  Suppose now that a virtual displacement corresponding to the
mth mode is introduced. The virtual work done by the inertia forces
during this process is

;
Y (Minn?)rm
r=1

If the process is now reversed, i.e., virtual displacements corresponding
to the nth mcde are imposed on the system already in the mth mode, the
virtual work is

J
2 (Mrarmwm 2) Grn,
r=1

According to the elementary principle known as Betti's law,® these two

* An equivalent statement of orthogonality is that the scalar product of two normal-
ized characteristic vectors is zero. Various proofs may be found in textbooks on
applied mathematics.’? The one given here is purposely developed by the use of
commen structural concepts. An alternative proof in matrix notation is given in the
Appendix,
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virtual work quantities must be equal. Therefore

i J
wnz E Mrarnarm = wmz Z Mrarmaru
r=1

r=1"

i
or (a2 — wp?) E Mantm =0
=1 .
Since (wx? — wa?) cannot be zero if n = m,

7
z M = 0 {3.13a)
r=1

which is the orthogonality condition. This is an extremely useful coneept
in the analysis of muitidegree systems. :

The validity of Eq. (3.13a) can be demonstrated by consideration of
the two-degree example of Secs. 3.2a and 3.3, for which the characteristic
shapes were found to be

an = +1 a4 = +1
a2 = 41 ag = —1

Writing Eq. (3.13a) for a two-degree system,
Miana: + Maana, =0

and substituting M, = M, = M (as assumed in the example) and the
numerical characteristic amplitudes, we obtain

M(+1D)(+D) + M(+1)(-1) =0

Thus the orthogonality condition is satisfied.

Another form of orthogonality which is also useful involves spring con-
stants rather than masses and may be developed as follows.

For a system vibrating in a normal mode, the inertia and spring forces
form a set of forces in equilibrium. By the law of virtual work the net
work done by such a set during a virtual distortion must be zero. For
the nth mode, let the inertia force at mass r be M,w, %, and the force in
spring ¢ be kA,,, where A, is the spring distortion. Then the total work
during a virtual distortion in the form of the mth mode is

J ]
Y, (Mws2arm)arm + Y kbgnbiym = 0

r=]1 v=1

7 &
1
or Y Maman + o .,;1 kohnBom = 0

ral

Lumped-mass Multidegree Systems 97
where j and s are the number of masses and springs, respectively, By

Eq. (3.13a), the first series in the last equation is zero, and therefore

3 bolonligm = 0 ' (3.13b)
=1

g

which is the second orthogonality condition.

' In the two-degree example previously cited, the modal spring distor-
tions may be determined from the modal amplitudes as follows (Fig. 3.7):

An =gy = +1 Az = a@g — a3 = 0
Alp = @ys = “+1 Az = @z — a1y = —2
Ay = @3 = +1 Agy = @y = ~1

'Ijherefore, since all spring constants are k, substitution into Eq. (3.135)
gives

3

2, kol = k(+1)(+1) + k(0)(~2) + k(+1)(—1) = 0

a=1

which demonstrates the validity of the second orthogonality condition,

3.4 Stodola-Vianello Procedure for Natural Frequencies and Charac-
teristic Shapes

Direct determination of natural frequencies and characteristic shapes as
given in Sec. 3.2 is excessively tedious if there are more than two, or
perhaps three, degrees of freedom. This is true because, for an N-
degree system, the frequency equation [e. g., Eq. (3.12)] is of degree N and
the solution is very laborious if N > 2 or 3, Furthermore, the expan-
sion of the determinant [Eq. (3.9)] may be impractical in such cases. It
is therefore necessary to resort to numerical, iterative (i.e., trial-and-
error) procedures. The most commonly used of these is that associated
with the names of Stodola and Vianello.

In the general case, this procedure involves the solution of Eqgs. (3.8)
by iteration, which yields both the natural frequency and the character-
istic shape. The procedure is as follows: (1) assume a characteristic
shape, ie., a set of a values; (2) using one of Eqgs. (3.8), solve for w?;
(3) using the remaining (¥ — 1) equations, obtain a new shape by solving
for (N — 1) ¢’s in terms of the N'th a; and (4) using the new shape just
computed as the assumed shape in the next cycle, repeat the procedure
to convergence, i.e., until the computed shape is the same as the previ-
ously assumed shape. In step 3 it is usually convenient to assign a unit
value to the Ntha. The rate of convergence may be increased by “over-
relaxation,” Le., by using an improved estimate of the shape in step 4,
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based on the trend of convergence rather than that actually computed
in step 3. However, this refinement is not necessary and requires experi-
ence to be done successfully.

The procedure outlined will converge on either the highest or the lowest
mode, depending upon the form of the equations of motion (Sec. 3.4a).
The other modes are then obtained, using the same procedure, after having
first eliminated one of the equations by use of the orthogonality condition.

The Stodola-Vianello method is best deseribed by a numerical example.
For this purpose the natural frequencies and characteristic shapes of the
three-degree system shown in Fig. 3.8 will be determined. The equations
of free motion are

Mgy + kayy — ka(ys — 1) = 0
Mzgg + kg(yz - y1) - ka(ys - yz) =0 (3-14)
Mgz + ks(ys — y2) = 0

Proceeding as before, we substitute
Yr = Grn S0 wn(f + o) and Ur = —enwn? 8in 0, + &)
cancel the common sine terms, and rearrange to obtain

(_len2 + kl + k2)a1n + (—kz)azn =0
(—k)aw + (—Muw,? + by + ks)asm 4 (—k)as. = 0 (3.15)
(_ks)azn + (—ﬂfamn2 -+ ka)aan =0

where the subscript n indicates that the equations apply to any mode.
For the numerical example, the following values are given:

M, = 2 lb-sec?/in. M, = M, = 1 1b-sec?/in.
k, = 6000 1b/in. k; = 4000 1b/in. k; = 2000 1b/in.
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Insertion of these values in Eq. (3.15) and rearrangement leads to the
following convenient form of the equations:

(@) .20, = 5000ay, — 2000a,,
(b) w,,zaz,. = _400005111 + 60000;2" - 2000(13,; (316)
(c) a3, = —2000as, -+ 200043, -

The procedure is to substitute an assumed shape in the right sides of the
equations, use one equation to compute w.? and use the two remaining
equations to obtain the second trial shape. After this process has been
repeated several times, the shape will converge on that of the highest, or
third, mode, and therefore the analyst should begin by making an esti-
mate of the relative amplitudes for that mode. For example, let us
assume

a; = +1 as = —1.5 azz = +0.5
Substituting these in Iq. (3.16a),
wz2(~+1) = 5000(4+1) — 2000(—1.5) wa? = 8000
Substituting this value for w;? and the a’s in the right side of Eq. (3.165),

8000{as;) = —4000(4+1) 4 6000(—1.5) — 2000(40.5)
Therefore az; = —L1L.75

Finally, from Eq. (3.16¢),
8000(as;) = —2000{—1.5) + 2000(0.5)  az = +0.5

Therefore the first estimate of w;? is 8000, and the next trial shape is to
be taken 85 @13 = +1, a3 = —1.75, and as3 = 40.5. This procedure
is repeated until convergence is achieved as indicated in Table 3.1. It
may be seen that five cycles are required to obtain what is considered to
be satisfactory agreement between the assumed and computed shapes.
The last values computed are adopted as shown in the summary of Table
3.1. Tt isimportant to retain sufficient significant figures in the first mode
computed since small errors here would result in large errors in the last
mode computed. It should be reealled that the absolute amplitudes are
indeterminate and the values used are arbitrary, since a,; was arbitrarily
taken as unity. However, the ratios of the amplitudes are all that is
required.

Proceeding to the next mode, we use the orthogonality condition to
reduce the number of equations by one. If, in Eq. (3.13a), n is taken to
be the third mode just computed and m the second mode now to be com-
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Table 3.1' Stodola-Vianello Procedure (for System Shown in Fig. 3.8)

Third mode
Trial values Computed values
Trial
no. w? Gz Qa3
G1a a1 Gaz Eq. (3.16a) | Eq. (3.16b) | Eq. (3.16¢)
1 +1 —~1.50 +0.50 8000 -1.75 +0.500
2 +1 —-1.75 +0.50 8500 ~1.82 +0.53
3 +1 —1.82 +0.53 8640 ~1.85 +0.545
4 +1 —1.85 +0.545 8700 -1.86 +0.550
5 +1 ~1.86 +0.550 8720 —1.866 | +0.554
Second mode
Trial values Compuled values
Trial no. .
wy a2z sz
812 G2z Eq. (3.180) | Eq. (3.186) | Eq. (3.17)
1 +1 +0.5 4000 0.713
2 +1 +0.713 3570 +0.754
3 +1 +0.754 3440 +0.764
4 +1 +0.764 3470 +0.765 -1.033
Summary
w? a1 az as w fr cps
Third mode | 8720 +1 —1.866 | +0.554 | 93.4 14.86
Second mode| 3470 +1 +0.765 | —1.033 58.9 9.37
First mode 780 +1 +2.11 +3.50 28.0 4.45

puted, the expanded series is

3
E Mo mten = Mitt12013 + Miaz0:; + Mia3003;

r=1
2(a12) (+1) + 1(@20)(~1.866) + 1(aszs)(+0.554)
or dz2 = —3.610012 + 3.368022 (317)

Substituting the last expression for a; into Egs. (3.16) results in only
two independent equations, which may be written as follows:

(G) wzzalg = 50000.12 - 2000022

3.18
(b) szagg = 3220012 - 73602: ( )
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We now iterate Eqgs. (3.18) to obtain w,?, a;,, and @z, and then use Eq.
(3.17) to obtain a;2. Assume a1z = +1, gz = +0.5. By Eq. (3.184a),

ws¥(+1) = 5000(+1) — 2000(+0.5)  w? = 4000
By Eq. {3.183), .
4000(a22) = 3220(+1) — 736(-+0.5)  ass = +0.713

Subsequent cycles of iteration are given in Table 3.1, where it may be
seen that four cycles are required for satisfactory results. In the last
step, Eq. (3.17) is used to obtain a;,.

The first mode can now be computed directly from the orthogonality
condition. This is always true of the last mode computed. Equation
(3.13a) must be applied twice, first combining the third and first modes,
and ther combining the second and first modes.

3
E M.a.:0,1 = Mmmﬂn + Mzazzan + Mias:045

re1
. 2(+yann 4+ 1(40.765)as, + 1(—1.033)a;; = 0
E M,a.30,1 = Miaysa11 + Maaman + Maas0s

r=1

il

(3.19)

= 2(+1)ai; + 1(—1.866)as: + 1{+0.554)as; = 0

Taking ai, = +1, these two equations are solved simultaneously to
provide

ey = +2.11 azy = +3.50

Any one of Egs. (3.16) may now be used to compute w;®. Using Eq.
(3.16a),
2(41) = 5000(+1) — 2000(+2.11)
w;2 = 780

As a check on the accuracy of the solution, the frequency and shape of
the last computed mode may be substituted into either Eq. (3.16b) or
(3.16¢). It will be found that, in most cases, slide-rule computation does
not provide sufficient significant figures if there are more than three modes.

The summary in Table 3.1 gives the complete solution of the problem,
Le., the frequencies and characteristic shapes of the normal modes for
the system in Fig. 3.8. The characteristic shapes are depicted graphi-
cally in Fig. 3.9.

a. Alternative Use of Flexibility and Stiffness Equations

In the preceding sections the natural frequencies and characteristic
shapes were derived from stiffness equations; i.e., the equations of motion
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were written in terms of stiffness coeflicients k. For example, each of
Egs. (3.3) is of the form

My + Yky =0 (3.20)

where the %’s arc stiffnesses. When the Stodola-Vianello procedure is
applied to such equations, the first mode obtained is the highest mode;
e.g., in the computations based on Fig. 3.8 the third mode was first
obtained. In many eases this is undesirable since the fundamental, or
first, mode is usually of greatest interest. In fact, when dealing with
many degrees of freedom, analysis is often based on the first few modes
alone, while the higher modes are neglected.

This difficulty can be circumvented if the equations of motion are
written in terms of flexibility coefficients. The form of the equations is
then

y+ YDMj =0 (3.21)

where the I)’s are flexibility coefficients. If the Stodola-Vianello method
is applied to equations such as (3.21), the first mode obtained, rather than
the highest, is the fundamental.

To illustrate the use of flexibility coefficients, consider the beam with
three concentrated masses as shown in Fig. 3.10. The coeflicients are
denoted by D.; which, by the usual structural convention, indicates the
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deflection at point ¢ due to a unit force applied at point j. Thus the coef-

ficients are determined by the successive application of unit forces at the
various points. For example, in Fig. 3.10b, the coefficients obtained by
applying a unit force at point 1 are indicated. Since, in a normal mode,
'f the only forces involved are inertia forces, the equations of motion are
derived from the fact that, at any instant, the total deflection is the sum
of the deflections due to the individual inertia forces. Considering the
force system shown in Fig. 3.10e¢, the following may be written:

= —MhDy — MyjDy,y — MajsDia
y: = — My Dy — MoigeDaz — MygjaDos (3.22)
Y3 = —Mi§iDy — MyjjsDyy ~ MyjsDys

As in previous discussions, we now substitute Yr = Gen 8D w,(f + &) and
fr = —Opwa® 8in w.{f + ), cancel the common sine terms, and rearrange
é to obtain

,
(#1004 = 25 ) o1y + (MDiase + MDran, = 0

(Mlpﬂl)aln + (M2D22 - ! )azn -+ (MaDza)azn = (323)

wn?

(M 1\Da1}ar + (M3D3s)as, + (MaDas - wiz) Gz = 0

These equations are equivalent to Egs. {3.8) or, in the previous example
given, Egs. (3.15). The Stodola-Vianello procedure may be applied to
Eqgs. (3.23) in exactly the same manner as previously deseribed for stiff-
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ness equations. The first step would be to rewrite the equations in the
form

t_‘h% = M1Dnawn + M:D19a20 + MaD1asa

&n
g% = M1D201n+ M2D3s82n + MiDasags (3.24)
% = M1Datin + MsDjats, + MiDysaz,

The procedure would then be

which are equivalent to Egs. (3.16).
It will be found that

exactly the same as illustrated after Eqs. (3.16).
the fundamental mode is first obtained.

In view of the disadvantage of obtaining the highest mode first, the
only reason for using stiffness equations is that, in many cases, the stiff-
ness coefficients are more easily computed. For example, the stiffness
coefficients for the rigid frame of Fig. 3.11 are obtained by introducing
unit deflections at the floors. One set of coefficients would be computed
by a simple moment-distribution sidesway solution as illustrated in Fig.
3.11d, where the holding forces are the desired stiffness coefficients. On
the other hand, determination of a similar set of flexibility coefficients
requires a more complex analysis involving the superposition of three
sidesway solutions followed by deflection computations as indicated in
Fig. 3.11¢. :

In other cases, the flexibility coefficients are more easily determined
than are the stiffness coefficients. For example, for the beam of Fig.
3.10, it is easier to determine the deflections due to unit loads than to
determine holding forces due to imposed unit deflections. If shearing
distortions are to be included, it is impossible to obtain the stiffness coeffi-
cients directly, and one must begin with flexibilities.

It should be noted that equations of one type can, if necessary, be
inverted to obtain the equations of the other type. For example, if Egs.
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FIGURE 3.1]1 Rigid frame--stifiness and flexibility coefficients.
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(3_.22) are siolvt?d for M4, Majs, and Mg, one obtains the corresponding
stiffness equations in the form of Eqgs. (3.3). This or the reverse opera-

‘tion is sometimes a useful procedure.

3.5 Modified Rayleigh Method for Natura! Frequencies

When the system has many degrees of freedom, the Stodola-Vianello
method for determining frequencies and characteristic shapes becomes
exceedingly cumbersome, if not impossible. This is true because one
must deal with the complete set of equations of motion, one equation for
each degree of freedom. In this section an approximate method usually
attributed to Rayleigh is presented for use when one is interested in only
a few of the lower modes.

It is shown in Sec. 3.5a that, by this method, the natural frequeney of
the fundamental mode can be obtained with considerable accuracy and
yet with relative ease. The characteristic shape obtained is less accu-
rate, but can be improved by an iterative procedure. In Sec. 3.5b, the
method is extended to include higher natural modes. The method
described herein is particularly useful for systems with continuous mass
distribution and hence an infinite number of degrees of freedom. Appli-
cations of this sort are given in Chap. 4.

a. Fundamental Mode

The Rayleigh method is an energy procedure based on an assumed
characteristic shape. Let ¢'(z) be an assumed nondimensional shape,
where z is a coordinate defining positions on the structure, and let the
assumed displacements be 4’¢’(z), where A’ is an arbitrary constant.
For 2 lumped-mass system, the assumed displacement at mass r is
expressed by A'¢,. If this were the true shape of a normal mode, the
corresponding inertia force would be

M,A’$/w* = constant (M,¢])

Since the absolute value of the inertia force is indeterminate and of no
mmportance, the constant may be dropped. Therefore let F.; represent
this force and be given by

Fu= Mr'#:-

Suppose that all the forces F.; were applied to the system and the resulting
deflected shape determined. This new shape will be identified by ¢ (x),
the displacements by A”¢”(z), and that at mass r by A”¢!'. If these
displacements represent the true modal shape, it can be stated that the
kinetic energy of this gystem at zero displacement equals the work done
by the inertia forces as the system moves from zero to maximum dis-
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placement. This statement may be further explained by the fact that
the work done by the inertia forces must equal the strain energy in the
system at maximum displacement and, furthermore, that this maximum
strain energy must equal the maximum kinetic energy at zero displacement.
Since A"¢,’ is the maximum displacement and the motion is harmonic,
the maximum velocity of mass r is A”¢,'w. Therefore, for the complete
system,

x

¥ MM (474 )
r=1

U

3 JF(A"4))
r=1

where X = total kinetic energy at zero displacement

U = total strain energy at maximum displacement

j = number of masses
In the expression for strain energy, the 14 factor appears because the
force varies linearly from zero to a maximum as the displacement inereases.
Equating the above energy expressions, we obtain

2 Frig
PR N (3.25)
4" Y Mol
r=1
which gives the natural frequency of the fundamental mode for a lumped-
mass system based on an assumed shape ¢'(z). The computed shape
¢''(x) is a better approximation of the characteristic shape of the mode.

To summarize, the complete procedure is as follows: (1} assume a shape
¢'(z); (2) compute the corresponding inertia forces F,; (3) compute the
deflections due to Fu, or A”¢"(z); and (4) compute the natural frequency
by Eq. (3.25). If greater accuracy is required, this procedure can be
repeated using ¢''(z) as the assumed shape for the next cycle.

The success of the Rayleigh method lies in the fact that accurate values
of frequency are obtained even though the assumed shape is only approxi-
mately correct. The best first estimate of the fundamental-mode shape
is usually that produced by the dead weight, or in other words, by the
gravity forces acting on the masses of the system. This was, in fact, the
basic concept of the original Rayleigh method. The complication encoun-
tered in applying the method to higher modes is that no such simple device
exists for estimating the modal shapes.

To illustrate the above method, we shall determine the natural fre-
quency and characteristic shape for the fundamental mode of the three-
degree system shown in Fig. 3.12. This is the same system as that used
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FIGURE 3.12 Determination of fundamental mode by the Rayleigh method.

for illustration of the Stodola-Vianello method in Sec. 3.4. For the Ray-
leigh method, the first step is to compute the dead-load deflections as
indicated in Fig. 3.12b. ¢'(x) is evaluated by arbitrarily letting A’ equal
the deflection at mass 1, and hence ¢, = 1. The remainder of the pro-
cedure is shown in Table 3.2, where the dead-load shape is the assumed
shape in the first cycle, and the computed shape of that cycle is taken to
be the assumed shape of the second cycle. It may be observed that the
frequency obtained in the first cycle is indeed accurate, sinee no later
improvement is made. However, the characteristic shape is not very
accurate, and three cycles are shown to indicate the rate of convergence.

Comparison with the values for the fundamental mode in Table 3.1
(the same problem done by Stodola-Vianello) reveals that the two give
essentially the same result. Since the first mode was the last obtained
in the Stodola-Vianello procedure, the values given in Table 3.2 are the
more accurate.

It should be apparent that the Rayleigh method s extremely useful
for systems having many degrees of freedom. This is particularly true
when the complete set of equations of motion are not required for other
purposes and when the structure is such that stiffness and flexibility coef-
ficients are difficult to compute. By this method deflections need be com-
puted for only one set of loads, while to write the equations needed for
the Stodola-Vianello method requires a whole series of computations for
stiffness or flexibility coefficients.
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Table 3.2 Modified Rayleigh Method for Fundamental Mode of
Systern in Fig. 3.12

M Assumed p.. = | Compuied | Computed
Cycle og:: shape II; ‘; deflection shape Frup!’ M (p))
P ¢: rPr A"¢;’ ¢:'
1 1.00 2.00 0.001042 1.00 2.00 2.00
1 2 1.75 1.75 0.002104 2.02 3.54 4.08
3 2.50 2.50 0.003354 3.22 8.05 10.37
13.59 16.46
Eq. (3.25):
13.59
e 0= 2 = 28.2
“ = 0001042z x 1646 T 2 @ rad feeo
1 1.00 2.00 0.001207 1.00 2.00 2.00
2 2 2.02 2.02 0.002517 2.08 4.20 4.33
3 3.22 3.22 0.004127 3.42 11.01 11.70
17.21 18.03
17.21
2 - —_— = 1 = . d
“ T 001207 x 1808 ~ 1 @ = 282 rad/sec
1 1.00 2,00 0.001250 1.00 2.00 2.00
3 2 2.08 2.08 0.002625 2.10 4 .37 i4.41
3 3.42 3.42 (.004335 3.47 11.87 12,04
18.24 18.45
.24
w? = 18.2 = 791 w = 28.2 rad /sec

T 0.00125 X 18.45

b. Higher Modes

The Rayleigh method may be extended to obtain a higher-mode shape
and frequency by the Schmidi orthogonalization procedure.’* In short,
this procedure is to assume a shape, “sweep out” those components of
the shape associated with lower modes, and then apply the Rayleigh
method based on the residual shape. The computation will always con-
verge on the next higher mode.? The theoretical basis for the procedure
is given below.

Any shape which might be assumed can be expressed as

¥ .
$ra = Zl'l/m¢rm (3'26)

where ¢,, = assumed deflection of mass r
¢-m = deflection coordinate for mth mode
Ym = participation factor for mth mode
N = number of modes

il
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This equation states the known fact that any shape which might be
imagined can be formed by a linear combination of modal shapes.* If

both sides of Eq. (3.26) are multiplied by M rPrg, Where ¢, is the deflec-
tion coordinate for the gth mode, we obtain

N
Mr¢ra¢'rq = ;1 'PmMr¢m¢fq (327)

Summing over all masses,

=

) i
21 Mf‘bm‘?rq B ;1 1"’"'M r@rmPry (3'28)

m

Sinee by the orthogonality condition

J
le M bompry = 0

all terms on the right side of Eq. (3.28) may be eliminated, except those

for m = ¢, and the equation may be written

j J
21 Mr#’rud’rtz = z_:l ‘I’qud’?-q
Therefore the participation factor for the gth mode is

j

E Mr¢’ru¢rq'
Vo = '______E‘J_ (3.29)
) M.,
r=1

and the participation of the gth mode in the assumed deflection at mass
r i8 ¥,é. If, for example, the shapes of two modes « and » had been
previously determined and the assumed deflection “‘swept” of these
modes, $.., would be given by

¢Nll = ¢'H1 - ijbu¢ru - ¢ﬂ¢f1’ (330)

This swept shape would be used in Eq. (3.25) to compute the frequency
of the next higher mode after w and ». Tt should be recognized that the
foregoing development is merely a device by which the assumed shape is
adjusted so ag to satisfy the orthogonality condition for all previously
computed shapes.

* This is obviously true since any shape is defined by exactly & coordinates, Given
these coordinates, Eq. (3.26) provides N simultaneous equations, which could be used
to solve for the N participation factors.
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To illustrate the above procedure we shall obtain the second mode of
the system shown in Fig. 3.12. The computations are shown in Table
3.3, where the first mode is swept from the assumed shape in each eycle,
using the characteristic shape computed in Table 3.2 for that mode.
Otherwise the procedure is the same as that used for the first mode. The
first-mode shape ¢,; is taken as the last computed values in Table 3.2,
The assumed shape in the first cycle is merely an educated guess.

As in the case of the first mode, the natural frequency is obtained quite
accurately in the first cycle of computation, but several cyeles are required
to obtain an accurate characteristic shape. The difference between the
final shape computed (¢, in the third cycle) with that given by the
Stodola-Vianello method in Table 3.1 is due to errors in both procedures
resulting from roundoff and incomplete convergence.

For a many-degree system, the above procedure could be continued
for as many modes as required. The last mode, e.g., the third mode in
the example, can be computed directly by the orthogonality condition.
This would not occur in practice, however, since if all modes are to be
obtained, the Stodola-Vianello method is probably more convenient.

3.6 Lagrange's Equation

Before proceeding to the determination of response for multidegree sys-
tems, it is convenient to develop a basic tool, namely, Lagrange’s equation.
This formulation, which is based upon energy concepts, is an extremely
powerful device for the analysis of dynamic systems. It is useful not
only for lumped-mass systems, but perhaps even more so for systems with
distributed mass, and will be used extensively in Chap. 4. Several deri-
vations of Lagrange’s equation may be found in the literature.!1-12.14.15
The approach given below is based on the law of virtual work because
structural engineers are familiar with this principle. More concise devel-
opment is possible, but requires knowledge of certain principles of mathe-
matics which are not presumed herein.

Consider the configuration shown in Fig. 3.13, consisting of an elastic
structure (shown as a simple beam for convenience) supporting a group

FIGURE 3.14 Lagrange’s equation—notation.
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of j masses, M,, and subjected to a group of m forces, Fi.. The deflected
shape is defined by a set of N generalized coordinates, ;. Tt is necessary
that the shape be completely defined by N and only N coordinates. Thus
the system has N degrees of freedom. The points at which these coordi-
nates are given need not include the mass and load points, but the deflec-
tions at the latter points must be defined by the generalized coordinates.
Suppose now that a virtual distortion is introduced consisting of a small
change in one generalized coordinate, ¢;.. Let this change be designated
by égi. By the law of virtual work, the work done by the external forces
during the virtual distortion must equal the change in internal strain
energy. Noting that, in a dynamic system, external forees include both
real loads and inertia forces, we may write the preceding statement as

W, + 5Wy, + W, = s (3.31)
where W, = virtual work done by external loads F,
dW;, = virtual work done by inertia forces
W, = virtual work done by damping forces
58U = change in internal strain energy
Three of these terms may be expressed simply as
Iw,
(a,) 5’W8 = Eé:‘ 6q:
oW,
()] W, = 20, 8¢g: (3.32)
{e) U =
and evaluated by the partial differentiation indicated. In order for Eqgs.

(3.32) to produce the desired result W,, W, and U must be the work and
energy due to small changes in all generalized coordinates. The partial
derivatives then give the rate of change with respect to one coordinate, g;.
The fourth term, §W,,, requires further manipulation. This may be
expressed by

Wi = — z (M,5,) 6;, i

r=1
where v, is the total displacement at mass . The right side indicates
the sum for all masses of the product of the inertia force and the virtual
displacement at r resulting from &g, For reasons which will become
apparent below, this is now expressed in the equivalent form

i
- %r21 M avr

Wi = G b+ z M., "”ﬁ s (3.33)
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The last is based upon the fact that

df. du\ _ av,
a(vra—qi) + Yr — q

It is now convenient to introduce the kinetic energy % defined by

i
(a') X = }ﬁMri'rz
TZI
MmN oy
(b) % = rzl M, 5o (3.34)
i
axK . O,
(C) aql - 'Zl Mrur 'é‘q:
Furthermore, sinee », = f(g.),
Bt and b, _ 9,
TR 3G~ oy
Equation (3.345) may therefore be written
34
@ s E Mo, (3.34)
Substituting Eqs. (3.34¢) and (3.34d) into Eq. (3.33),
d foK aK
A [t ? 3.35
dWin dt(aq'.-) 1+( )Bq (3.35)

Finally, substituting Eqs. (3.35) and (3.32) into Eq. (3.31) and canceling
dq;, we obtain

(3.36)

d (0K 0K , dU W, _ IW,
R R
which is the usual form of Lagrange’s equation.

In the application of Eq. (3.36}, expressions are first written for the
kinetic energy X, the strain energy <, the work done by the damping
forees W, and the work done by real external forces “%,, all in terms of
the generalized coordinates 1 - © - gv. When these expressions are dif-
ferentiated as indicated and substituted into Eq. (3.36), the result is an
equation of motion, there being one such equation for each coordinate g.
In all cases considered herein, 3K/d¢; is zero, since kinetic energy is a
funection of veloeity rather than of displacement.
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I h

Fle) FIGURE 3.14 Example. One-degree system.

a. Examples

In order to gain familiarity with Lagrange’s equation, we investigate
two simple examples below. These are trivial applications of the
Lagrange equation, but are presented for the purpose of emphasizing the
physical meaning of the various terms and of demonstrating the validity
of Eq. (3.36).

Tor the simple one-degree system in Fig. 3.14, there is only one coordi-
nate; that is, ¢; = ¥. The energy expressions in terms of y are as follows:

Kinetic energy = X = L4 My?

Strain energy = U = 1gky?

Work by damping force = W, = (—cgp)y
Work by external force = W, = F(t)y

The damping force must be taken as negative, since a positive damping
force is always in a direction opposite to positive y. The necessary
derivatives are ‘

0K _ K _ 4 d(‘m)=Mg

ag 9y dt \3¢:

ax

i

U _ We _ _ o
aq.- Y Bq.: h Y
W,

FraadC

Substitution into Eq. (3.36) leads to the equation of motion
Mg+ by +cy = FQ)

which i8 obviously correct and the same as that obtained directly by
congideration of dynamie equilibrium.

Second, consider the two-degree damped system in Fig. 3.15. There
are now two generalized coordinates, 4, and y.. The energy expressions
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72 "

Y

ah hn
il =

C(ﬁg'fq) kz(yz_)ﬁ)
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FIGURE 3.15 Example. Two-degree Fle)

system. (5

in these terms are

= %Mlylz + %Mzzi'zz

= Lok + Yaka(ys — 11)?

We = (—eg)in + (=@ — 91)1(y2 — w1)
W, = Fx(t)yl + Fz(t)yz

e #

Note that, in these expressions, it is important to include all the energy
of the system. Note also that, as this system is defined, the darping
force between the two masses is proportional to the relative velocity, and
the distance through which that force moves while doing work is the
relative displacement. The required derivatives are

ax . d fox

_. = M s — = i

oy W di (ayl) Mg

K ) d fex

- = M —_— - = ]

2 W di (agz) My

o _om _

oy Oyr

U

5?}‘1 = kyy — kayps + ka1

au .

‘a—y2 = koys — fﬁzyl

oW, _ o oW, .
o cy1 + ¢(g: — §1) 3 —elge — )
W, W
—_— F & = -

ayl l(t) a’y2 Fz(t)
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Substitution of the derivatives with respeet to y, (that is, . = ¢) into
Eq. (3.36), followed by the substitution of derivatives with respect to y»,
yields the two equations of motion

Mg + byr — ko(yz — ) + ¢t — el — 1) = Fi(t)
Mo + ka(yz — y1) + ¢(@2 — 1) = Fu)

These equations are readily verified by the consideration of dynamic equi-
librium as indicated in Fig. 3.155. The above method is obviously an
inefficient way to write the equations of motion. Furthermore, it should
be recognized that the Lagrange equation is merely a device for writing
the equation of motion, and is not a method of solution. However, as
will be seen in the remainder of this chapter and in following chapters,
the Lagrange equation has some very important uses.

3.7 Modal Analysis of Multidegree Systems*

Having developed the ideas and procedures presented in the foregoing
sections, we are now in a position to determine the response of multidegree
systems due to applied forces or initial conditions. This will be accom-
plished by the modal methed, in which the responses in the normal modes
are determined separately, and then superimposed to provide the total
response. As will be proved below, the important point is that each
normal mede may be trealed as an independent one-degree system.

The applicability of the modal method of analysis is limited to linearly
elastic systems and to cases in which all forces applied to the structure
have the same time variation. These are rather severe limitations.
When these conditions are not met, numerical analysis must be used, as
demonstrated in Sec. 3.9.

a. Modal Equations

We shall now demonstrate that the normal modes are indeed inde-
pendent and at the same time develop the governing modal equations of
motion. This objeetive is conveniently accomplished by the use of the
Lagrangian equation.

Consider a lumped-mass system having ; masses, s springs, and N
normal modes. The system may be close- or far-coupled. At any
instant the total kinetic energy in the system is

i N
% = rgl M, ( Z=:1 b))’ (3.37)

* An alternative development of the modal method of analysis using matrix nota-
tion is given in the Appendix.
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where d,. is the velocity component of mass r associasted with the nth
mode. The total strain energy in the springs of the system is

3 N
Y = 2 Yoko (Y Aun)? (3.38)

_ where A;, is the distortion of spring g (i.e., the relative displacement of

its ends) in the nth mode, and k, is the stiffness of that spring. Both
Eqs. (3.37) and (3.38) are based on the fact that any displacement or

‘velocity is equal to the sum of the modal components.

The squared series in Eq. (3.37) is equivalent to the sum of the squares
of all modal components of d¢. plus twice the sum of all eross products of
these components. When summed over all masses, the total of these
cross products must be zero, according to the orthogonality condition

{Eq. (3.13a)]. To demonstrate, consider a two-mass two-mode system
for which

2 : 2 2
E %Mr (E tirrz)2 = E %Mr(d'fl + 2&,10.),2 + 0,32)
el n=1 r=1
2 2 2
= Z %Mr E d’fn + 2 Mrdrldrﬁ
r=1 n=1 r=1

The second series is identical with Eq. (3.13a}, except that the modal
terms are velocities rather than displacements. However, since charac-
teristic shapes also apply to velocity veectors, this series must also be zero.

-Therefore Eq. (3.37) may be written as

J N
x = 21 M, r; a2, (3.39)

=

If exactly the same reasoning is applied to Eq. (3.38) and use is made
of the second orthogonality condition {Eq. (3.13b)], it iz clear that Eq.
(3.38) can be written as

& N
u = E Yok, Y AL (3.40)
g=1 =1

Considering the external forces F, acting at the r masses, we find that
the work done in terms of the displacements is

i N
W, = rglF, 2 Grn (3.41)

For each mode it is convenient to select a modal displacement 4. so
that all individual mass displacements may be expressed in terms of this
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one variable. A, is usually taken as the displacement of one arbitrarily

gelected mass. Thus
am = A, (ZL:) = An¢rn

e :
b = A, | — ) = 4. i
() - 4o
Ayn
Agn = An (i’l) = An¢Agn

where ¢.. and ¢a,. are constants for a given mode. A set of such con-
stants defines the characteristic shape or may be determined therefrom.
Equations (3.39) to (3.41) may therefore be written as

(@ x = 336, 3 Ao,
r=1 n=1
8 N
j N

(e) W, = E Z nen

For use in Lagrange’s equation, the following partial derivatives are
obtained:

ok _ Lo d{ax) _ 4 ¢
— = M,A, ™ s T = 4, M, gn
aA" le ¢ at (aA ) TZ] ’
au
aA" = Z k An¢ﬁgu A 2 kﬂ¢ﬂgn (3'4:3)

g=1

where 4. 1 the modal displacement and also an arbitrary coordinate
which will replace ¢; in Eq. (3.36). Note that, In each case, only one
N

term in the modal series 2 hag & derivative. Substitution of Eqgs. (3.43)

n=1

in Eq. (3.36) produces

A E Mr¢rn + A E kﬂ¢Agn = E Fr¢rn (3-44)

g=1 r=]

Comparison of this equation with that for a one-degree system

Mg+ ky=F@)
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reveals the important fact that the modal equation of motion (3.44) is in
exactly the same form as that for a one-degree system. Furthermore, the
three series may be assoeiated with an equivalent one-degree system as
follows:

-

;
E M.4%, = equivalent mass

=1

T A -
E k,é4,, = equivalent spring constant (3.45)
g=1

r]
E F.¢.» = equivalent force

r=l
The modal equation may also be written in the form
Fopn

A, + w,?A, ﬁ}=1_##
M. ¢%,
=1

Mu.

or since F, is a function of time and F, = F,{f{{)],

i
f(t) E Frld’rn
Aot oy = —=1 (3.46)

Y, M.l
r=1

This is the most important equation in this chapter. The two summa-
tions in Eq. (3.46) are constants for a given mode and loading, and the
modal response in terms of A, may be determined by this equation with-
out difficulty.* Since . must have been previously determined (in order
to obtain the modal shape), there is no need to compute the equivalent
spring constant. Inspection of Eq. (3.46) makes it apparent that the
modal method as formulated here can be used only if f(¢) is the same for
all forces acting on the structure. However, this resiriction can be

removed if the modal equations are solved by numerical methods.

*In some treatments the arbitrary amplitades of a mode are normalized so that

7

E M, ¢!, = 1. Thus the denominator on the right side of Eq. (3.46) would always
rma]
be unity. In the present application there is no significant advantage in this
procedure.
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Carrying the analogy to a one-degree system further, we see that the
modal statie deflection must be given by

J
2 Frl¢m
Ansl = % (3.47)
0,2 E Mr¢2n
r=1

since for a one-degree system y, = Fi/k = F,/w?M. The response is
therefore given by

(a) An(t) = Anu(DLF), (3.48)
(b) (A-n)max = Anet(DLF)n,mnx

where (DLF). depends only on f(t) and w.. All solutions and charts for
DLF given in Chap. 2 may therefore be applied to the analysis of multi-
degree systems. This is an important conclusion.

The total deflection at any point » is obtained by superimposing the
modes.

N
v = Y Anudra(DLF). (3.49)
=]
Given the modal frequencies and characteristic shapes, the analysis of
multidegree systems using Eqgs. (3.47) to (3.49) becomes relatively
simple.

The analogy between a mode and an equivalent one-degree system
may be stated quite simply as follows. The equivalent one-degree
system is one for which the kinetic energy, internal strain energy, and
work done by all external forces are at all times equal to the same quanti-
ties for the complete multidegree system when vibrating in this normal
mode alone. Referring to Fig. 3.16, where the equivalent system is
defined by k., M., and F., we may translate the foregoing statement
as follows:

Equating kinetic energies,
. J \
}éMeAi = Z %Mr(And’rn)ﬂ
r=1

i
and therefore M.= 2 M.4;,
r=1

Equating strain energies,

YokeAy = 3 Yoky(Aadagn)®
1

[

and therefore ke =
g

ke®agn
1

Il [
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% *
/

My
at
ar-tin=4Andir-1in l
Agn=arp—atrn
=dp dagn Fe (£}

fe

(3)

Qg =Andrn

(a)
FIGURE 3.16 Modal analysis. (¢) Multidegree system

vibrating in mode #; (b) equivalent one-degree
system for mode n.

Equating work by external forces,

F;(t)An = Fr(t)An‘brﬂ

I .

1

F.():n
1

r

and therefore Fi) =

U e B

I

These expressions for equivalent-system parameters are identical with
those of Eq. (3.45). There is, of course, a unique set of equivalent
parameters for each normal mode. This way of visualizing the basic
principle is sometimes useful.

b. Example

The response of the three-degree system shown in Fig. 3.17, resulting
from the loads shown in the same figure, is to be determined. The
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4, =6000 Ib/in,

M, =2 1b-sec?/in,
£y =30001
Ale)=F[HE) by
l 1 ulftel] Fy=40001b
Faq= = 200010
Ky = 40001 /in.
My =11b-sec2/in.
1 tg=01sec ¢
Fal#) =Fy[F(t]]
F(t) =1-10¢ £<0.1
k3 =2000Ib/in, fler=0 tz01

My =11b-sec®/in,

lfg(” =‘F31[f(f)}

FIGURE 3.17 Example. Modal analysis.

normal modes were obtained in Sec. 3.4 for the same numerical values
of the parameters, and the resulting natural frequencies and charac-
teristic shapes are shown in Fig. 3.9. The first step is to evaluate the
equivalent peak load and mass for use in Eq. (3.46). These rather
simple computations are shown in Table 3.4. For each mode, 4, is

Table 3.4 Modal Analysis; Modal Static Deflections for System in Fig. 3.17

Mass 2 Eq. (3.47)
Mode poind Pen Fr Fyithen M. Mr¢,-., At
1 1.00 2000 | 3000 | 2 2.0 | w?=1780
2 211 1000 | 8400 | 1 | 445 | 4440
1 3 3.50 | —2000) —7000 | 1 | 12.25 | 4™ = TR0 18.70
z 4440 18.70 = (0,304 in.
1 1.000| 3000| 3000| 2 | 2.000 | wse =3470
2 0.765 | 4000 | 3060 | 1 0.59 | 8126
2 3 | —1.033| —2000 | +2066 | 1 1.07 | 4= = 370 % 3.66
b 8126 3.66 = 0.640 in.
1 1.000 | 3000 | 3000| 2 2.00 | wst = 8720
2 | —1.866| 4000| —7464| 1 3.48 | _  —5672
3 3 0.554 | —2000 | —1108 | 1 0.31 | 4= = or S 579
= 5572 5.79 = —0.111 in.
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FIGURE 3.18 Example. Response of three-degree system in Fig. 3.17.

arbitrarily taken to be the deflection of mass 1. Equation (3.47) is
then used to compute the modal static deflections 4.,

For each mode, DLF is given by Eq. (2.17b) of Sec. 2.3¢, which may
be written as

(DLF), = 1 — coswnl + 229 _ L gorp <4,

r.u,,tg td

Equation (2.18b) would be used for ¢ > fs. In either case (DLF), is

‘merely the value for a one-degree system of natural frequency w, and

subjected to a triangular load pulse as shown in Fig. 3.17. The total
deflection at any point is given by Eq. (3.49). For example, the deflec-
tion of mass 2 as a function of time is

¥2(t) = Ay (DLFY, + A2uda:(DLI)y + Agudes(DLF);
(4+0.304)(+2.11)(DLF); 4+ (4+0.640)(+4-0.765)(DLF),

+ (~0.111)(—1.866)(DLF);
0.64(DLF), + 0.49(DLF); + 0.21(DLF), (3.50)

The modal components of y.(f) [i.e., the separate terms in Eq. (3.50)] are
plotted in Fig. 3.18. These were obtained by evaluating Eqs. (2.17b)
and (2.18b) for each mode. The total deflection at any time is of course
the sum of the modal components.

It should be observed that the degree to which a mode participates
in the total vibration is greatly affected by the distribution of load.
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This fact is reflected in the quantity ZF,¢,.. The more nearly the
load values are similar to the corresponding amplitudes of the character-
istic shape, the greater is the participation. In fact, if the loads at all
points were proportional to the characteristic amplitudes of a certain
mode times the mass at the same points, the response would be entirely
in that mode and that mode alone.

The determination of maximum deflection at point 2 would involve
differentiation of Eq. (3.50) with respect to time in order to obtain first
the time of maximum response. This is obviously a very difficult
process. In many cases the practical solution is to proceed graphically
as in Fig. 3.18 and from this plot approximately deduce the time of
maximurm regponse.

An upper limit for the maximum response may be obtained by adding
numerically the maximums of the modes taken separately. This can
easily be done by use of Fig. 2.7, which gives (DLF).x. In this par-
ticular. case we have

First mode:
T = 0.225 sec ‘% — 0445  (DLF)mee = 1.12

Second mode:

T = 0.107 f% =094  (DLF)me = 1.53
Third mode:
T = 0.067 % =149  (DLF)ne = 1.68

Therefore the upper bound of ¥2 mex i8
Yomax < 0.64(1.12) 4+ 0.49(1.53) + 0.21(1.68) = 1.82 in.

Inspection of Fig. 3.18 indicates that, for this example, the value just
computed is a rather conservative estimate of the maximum displace-
ment. In fact, the true value, occurring at about 0.045 see, is 1.31 in.
However, if one mode had been more dominant and if the differences
between the natural frequencies had been greater, both of which condi-
tions usually occur, the upper bound would have been more acceptable.

If it is desired to compute a stress maximum in the structure, or in
the above example, a maximum spring force, the procedure is essentially
the same as that used above for maximum displacement. For example,
the characteristic distortions of spring 2 are

baz1 = $a1 = ¢ = 1.11
bazz = ¢z — P12 = —0.235
Pass = o3 — ¢a = —2.866
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The spring force at any time is given by

N

r’CzAz(t) = E szn.:¢A2n(DLF)u

n=l

kaf(+0.304)(41.11)(DLF); + (+0.640)(—0.235)(DLF),
+ (—0.111)(—2.866) (DLF),]
= k3[0.34(DLF), — 0.15(DLF); + 0.32(DLF),]

il

. The upper bound of the maximum spring force is therefore

(k2ds)mex < 4000[0.34(1.12) + 0.15(1.53) + 0.32(1.68)]
< 4600 Ib

3.8 Multistory Rigid Frames Subjected to Lateral Loads

To illustrate further the use of the principles developed in the preceding
sections, application is now made to actual structures. The examples
selected are rigid building frames subjected to horizontal disturbances,
e.g., dynamic loading due to blast or wind gust. The majority of such
structures may be considered, without appreciable error, to be lumped-
mass systems, with the masses concentrated at floor levels. Only hori-
zontal motions are considered, and these are assumed to be independent
of vertical motions, This assumption is permissible because vertical
motion due to changes in column length or flexure of girders has relatively
small amplitude and hence little effect on the horizontal response.

a. Frames with Rigid Girders

In many practical cases the girder stifinesses relative to the columns

are sufficiently large so that they may be assumed infinite. Since this

simplifies the analysis somewhat, responses are often computed on this
basis. Structures of this type are sometimes called shear busldings.

The building to be analyzed is the simple steel rigid frame shown in
Fig. 3.19. The weights of the floors and walls are indicated and are
assumed to include the structural weight. The building consists of a
series of such frames spaced at 15 ft. It is assumed that both structural
properties and loading are uniform along the length of the building, and
therefore that the analysis to be made of an interior frame yields the

. response of the entire building. ‘The loads which are concentrated at

floor levels are an acceptable idealization of a distributed dynamic pres-
sure applied to the walls. All loads have the time function indicated
in Fig. 3.19.

Under the assumptions stated, the entire building may be represented
by the close-coupled spring-mass system shown in Fig. 3.19. The con-
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FIGURE 3.19 Example. Steel frame with rigid girders.

centrated weights which are each taken as the total ficor weight plus
that of the tributary wall area are computed as follows:

Wi = 104(30)(15) + 20(12.5)(15)(2) = 54,300 1b
M, = 141 lb-sec?/in.
W2 = 100(30)(15) + 20(10)(15)(2) = 51,000 1b
M> = 132 Ib-sec?/in.
Wi = 50(30)(15) 4+ 20(5)(15)(2) = 25,500 Ib
M3 = 66 1b-sec?/in.

It should be pointed out that the weights used in the dynamic analysis
should be those expected to exist at the time of response and are not
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necessarily related to the design live floor loads. Since the girders are
assumed rigid, as is the column base, each spring constant is given by

_ 12E1(2)

k e .

and the individual values for the steel-column sections indicated are

& 12(30 X 10%)(248.6)(2)

1= 15 X 12)° = 30,700 1b/in,
[
ky = ky = 1260 goli)g)’f‘?’)@) = 44,400 Ib/in.

The equations of motion for the system, deduced by considering the
dynamic equilibrium of each mass, are

Mg + kv — ka(ys — 1) = F()
Mgy + ka(ys — Y1) — ka(’ya — y2) = 0.8F(1)
Ms‘ya + ]Ca(yz —_ y?,) = 05F(t)

The first step is to obtain the natural frequencies and characteristic
shapes of the three modes. In the usual manner, the equations of motion
are modified by taking the right sides equal to zero and substituting the

modal components (y = @ sin wt) for the displacements and accelerations,
to obtain

(—Muwn® + ky + ko)ar, + (—ka)as, =
(—k2)ain + (—Mawa? + ks + ks)asn + (—ks)as. =0
(~kg)az, + (—Mw,? + ka)az, = 0

From the last set of equations the normal modes may be obtained either
by direct determination (i.e., setting the determinant of the coefficients
equal to zero as in Sec. 3.2) or by the Stodola-Vianello method (Sec. 3.4).
In this particular case, the two methods are about equally convenient,
because of the zero terms in the determinant. Otherwise the latter
method is preferable. The natural periods and characteristic shapes
resulting from these computations are given in Fig. 3.20.

Next, the modal static deflections are computed by the evaluation of
Eq. (3.47). These computations are shown in Table 3.5. It is imme-
diately apparent from the values of A, that the fundamental mode
dominates this response.

In order to define completely the response (as used here response is
taken to mean any displacement or stress), use is made of Eq. (3.49),
in which (DLF), is given by Eq. (2.20) for this particular load-time func-
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Mode w? 7, sec a s

as

1 693 1 0.755 | +1,00 |+1.471 | +1.639
2 579 | 0.261 | +1.00 {-0.146 [~ 1.041
3 1231 0.179 | +1.00 |-2.220 | +2.680

— ]

\
\

1st mode 2d mode

”

N

3d mode

FIGURE 3.20 Characteristic shapes of frame in Fig. 3.19.

tion.

The maximum dynamic load factor for any mode may be obtained
from Fig. 2.9. The latter values for this example are:

Mode /T (DLF } mux
1 0.265 1.89
2 0.77 1.28
3 1.12 1.11

The maximum roof deflections (for example) given by Eq. (3.49) for
the modes separately are therefore

ya = (+0.358)(41.639)(1.89) = +1.11 in.
Yaz = (0.0146)(—1.041)(1.28) = —0.02 in. (3.51)
Yas = (+0.0018)(+2.680)(1.11) = +0.005 in.

Lumped-mass Multidegree Systems 129
Table 3.5 Modal Static Deflections for Frame in Figs. 3.19 and 3.20

Firat mode Second mode Third mode

Floor| Fu My

Pr1 Fragri | Mrgnt $rz Frigrs | Migrad [ 75 Frgrs | Megnat

1 | 5000 | t41) 1000 s000| 141 1.000 | zoco| 141 1.000 | 5000 141
2 | 4000 | 132 | 1.471| 5884 288 | —0.146 | — 548 3 | —2.220 | —sss0l 630
3 |{2s00| e8| 1.830 | 4007 177 | —1.041 | —z602| 72 2.680 | 6700| 474
12,081 602 1812| 216 2820| 1286
4 MO8 s
o = ————— = (], n.
Y T 803 X 604 :
Eq. (3.47) U 0.0146 i
q. (3.47): “‘_579X216 ={, in.
2820
A= — in.
" = 1231 x 128 0018l in

each mode 18

Aan,max = Ana!(d’Aan)(DLF)n.max

Asymex = (+0.358)(1.639 — 1.471)(1.89) = ++0.114 in.
Az max = (+0.0146)(—1.041 + 0.146)(1.28) = —0.017 in.
Aggmex = (10.00181)(2.680 + 2.220)(1.11) = +0.010 in.

It may be observed that, although the first mode still dominates, the
higher modes are relatively more important than in the previous com-
putation. The time histories of the modal components of story displace-
ment are plotted in Fig. 3.21. These are based on the time variation

1st mode

Since the first mode provides by far the major contribution, the upper
bound (i.e., the numerical sum) of maximum deflection may be used
without appreciable error. Therefore

Y3 max — 1.18 in.

This overriding influence of the first mode on deflections is typical of
building frames, provided only that all the loads act in the same direction.

The effect of the higher modes on stresses may, however, be more
significant. For example, consider the column bending moments
in the top story for which the associated characteristic amplitude is
¢as = ¢3 — ¢2. Thus the maximum relative story displacement in

-0.04
0

2d mode

I I 1 1 ] k

01 0.2 0.3 0.4 0.5 06
£, sec

FIGURE 3.21 Modal components of top-story distortion for example
defined in Fig, 3.19.
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of DLF as given by Eqgs. (2.20). Inspection of Fig. 3.21 reveals that,
in this partieular situation, little error would result if the maximum
story displacement were assumed equal to the algebraic sum of maximum
modal displacements, or 0.107 in. The maximum bending moment at
any column end in the top story is therefore

M = '('SEI—’?:'EE = %kaAs.muh
= 14(44,400)(0.107) (10 X 12)
= 142,500 Ib-in.

The use of the algebraic sum is proper in this example only because the
loads continue to act on the structure. If the loads had diminished to
zero, all DLFs would have been + and the numerical sum would have
been more appropriate. It may be noted that the algebraic sum could
also have been used in computing the maximum roof deflection.

The above is intended to illustrate the fact that maximum responses
can often be satisfactorily estimated without going through the tedious
job of maximizing the sum of the modal responses mathematically.
One must proceed with caution, however, and it is always conservative to
use the upper bound, or numerical sum, of the maximum modal responses.

b. Frames with Flexible Girders

To illustrate the procedure for taking into account girder flexibility
and also to indicate the magnitude of the effect, an analysis is now made
of the same building frame as shown in Fig. 3.19, except that the girders
are assumed to consist of the steel sections shown in Fig. 3.22. The
loading and mass distributions are identical.

The stiffness coefficients, which are derived from a conventional
elastic analysis of the frame, are shown in Fig. 3.22. The procedure is
simply to impose a unit deflection at each floor in turn and to compute
the resulting holding forees by moment distribution or any other appro-
priate method. A positive coefficient corresponds to a holding force
in the positive y direction. Also shown in Fig. 3.22 are the column end
moments corresponding to the unit distortions. .

In writing the equations of motion, it must be recognized that the
stiffness coefficients correspond to internal column shears, which resist
the motion if the coefficient is positive. For example, referring to
Fig. 3.22, we see that ki) resists the positive motion of the first floor if
is positive, while ki, being negative, increases the positive motion of the
gecond floor when ¥, is positive. Thus the equations of motion for each
mass have thie form

Mj = F(@) — Eky
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FiGURE 3.22 Example. Rigid frame with flexible girders. Stiffness coefficients.
(Moments are given in kip-inches, and stiffness in kips per inch.)

The complete set of equations for this system is

M1ﬂ1 + kn?h + ku’yz + klsys = Fl(t)
Maije 4+ kaxyr + kasys + kasys = Fa(t)
Mgy 4 kayy + kasye + Esgys = Fa(h)

After we set the right sides equal to zero, replace the y’s by the modal
forms (¢ sin o), and substitute numerical values (Sec. 3.8¢), these
equations become

0.141w,2a:, = 72.6a1, — 44.2a,, + 2.2a;,
0.132w,%a:, = —44.2a,, + 81.8a,, — 40.0as,
0.066w,20;, = +2.2a,, — 40.00s. + 37.8a:.

where the units are kips and inches. By applying the Stodola-Vianello
procedure as in previous examples, the natural frequencies and charac-
teristic shapes shown in Table 3.6 are obtained. Comparison of these
values with those in Fig. 3.20 reveals the effect of girder flexibility. As
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Table 3.6 Modal Shapes and Modal Static Deflections for Frame in Fig. 3.22
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Eq. (3.47):
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would be expected, the natural periods are increased, but only slightly.
The characteristic shapes are also affected, but not radically changed.

The computations leading to the modal static deflections are tabulated
in Table 3.6. Next, the maximum DLFs are obtained from Fig. 2.9
as follows (for the load function shown in Fig. 3.19):

Mode tr/T (DLF) max
1 0.25 1.90
2 0.73 1.33
3 1.07 1.05

Multiplication of the modal static deflection, the characteristic ampli-
tude, and the DLF yields the following maximum modal floor deflections:

Max deflection of floor
Mode Anll X brn x (DLF)ﬂ.max
3 2 1
+1.758 +1.32
1 (+0.394) 1 +1.541; (1.90) +1.15
+1.000 +0.75
—1.123 —0.026
2 (40.0173) { —0.0515} {1.33) 0
+1.000 +0.023
+2.075 +4-0.006
3 (+0.00267) { —1.873} (1.05) —0.005
+1.000 +0.003

Comparison of the third-floor deflections with those obtained for
rigid girders [Eqs. (3.51)] shows that, as expected, all have been shightly
increased. This increase is primarily due to the smaller stiffness of the
building, as would be true for static loading, although in addition the
DLFs are slightly different because of the longer natural periods.

In order to compute a bending moment in the frame, the moments

~ due to unit deflections given in Fig. 3.22 are multiplied by the actual

deflections. For example, the bending moment at the bottom of the
top-story column may be computed for each mode as follows:

Firstl mode:

+1.32(~1150) + 1.15(+1250) + 0.75(—95) = —153 in.-kips
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Seeond mode:

—0.026(—1150) + 0.0(+41250) + 0.023(—95) = 428 in.-kips
Third mode:

+0.006(—1150) — 0.005(+1250) + 0.003(—95) = —13 in.-kips

The algebraic sum of these moments is 138 kip-in. compared with the
sum of 142.5 kip-in. computed previously, when girder flexibility was
not considered.

As illustrated by the two preceding examples, the only additional
effort required to take into account girder flexibilities lies in the com-
putation of stiffness coefficients. Although for most typical building
frames the effect is not great, this effort may be worthwhile, to increase
the accuracy of the analysis, particularly if the girders are unusually
flexible. The basis for the decision is essentially the same as one would
use for a static analysis of horizontal deflection.

c. Frames Subjected to Pulsating Forces

To illustrate further the response of multistory building frames, the
effect of a sinusoidal horizontal foree is now investigated. This condi-
tion might be caused by the operation of machinery on one of the floors.
Although this effect seldom causes major structural damage, cases in
which the resulting vibration is objectionable for one reason or another
are. fairly commeon.

Consider again the frame with flexible girders as in Sec. 3.8b (Fig. 3.22).
Suppose that a horizontal force F, sin Q¢ were applied to the first floor
as indieated in Fig. 3.23a. A general solution will be developed which
will apply to all possible values of Q. The analytical procedure is the
same as for previous examples except that now there is only one load; i.e.,

Yrn = Anst¢rn(DLF)n (3520!)
where A = ——T1din (3.52b)

M
wﬂz 2 Mf¢3n
r=1

and (DLF), ig equal to that for a one-degree system subjected to sinus-
oidal force as developed in Sec. 2.5. More specifically, if damping is
included, the DLF corresponding to maximum steady-state response is
given by Eq. (2.41) or Fig. 2.18.

After substitution of the numerical values given in Table 3.6 for this
structure, Eq. (3.52b) yields the following static deflections for the
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FIGGRE 3.23 Rigid frame subjected to pulsating force. Response of top
floor,
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three modes:

— Fl
A = 39,500
—_— Fl
Awi = 115,000
As = 1510,000 ,

If the damping is taken to be 10 percent of eritieal in each mode, the
maximum DLF at resonance is 5.0, according to Fig. 2.18. Thus the
maximum possible modal components of deflection at any point may be
computed by Eq. (3.52a). For example, these values for the roof are

Yamex = A1 X 1.758 X 5.0 = F1(22.2 X 107%) in.
Yormax = Az X 1.123 X 5.0 = F1{4.89 X 10°%) in,
Yasmax = Asu X 2,075 X 5.0 = F1(1.03 X 10-°) in,

These maximums oceur only when the forcing frequency is equal to the
frequency of the particular mode. A complete deseription of possible
responses is given by Fig. 3.23b, which was derived by the use of Eq.
(3.52a), and Fig. 2.18, which provides DLT as a function of @/w,. Itis
apparent that the first mode produces by far the largest deflections, but
these occur over a rather small range of forcing frequeney. For higher
frequencies of the applied force, the second and third modes become
more important than the first. For a given 0, the total maximum roof
displacement could be conservatively taken as the numerical sum of
the modal amplitudes.

Although the maximum first-mode amplitude is large, it should not
be implied that the higher modes may be disregarded. In fact, the
modal acceleration may be more significant than the amplitude since
the inertia forces applied to the contents of the building are proportional
to acceleration. Such forces are more likely to cause damage to the
building or discomfort to persons within the building than is the mere
occurrence of displacement. Therefore it is of interest to investigate
maximum modal accelerations, and these are plotted in Fig. 3.23c.
Since maximum acceleration equals maximum displacement times fre-
quency squared, the ordinates of Fig. 3.23¢ are merely w,? times the
ordinates of Fig. 3.23b. It is immediately apparent that response in
the first mode is not the most serious with respect to acceleration.

d. Frames with Flexible Foundations

In all previous examples it 'has been assumed that the structure is
supported on a rigid foundation. If the structure is founded on relatively
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FIGURE 3.24 Frame on flexible foundation. Equivalent three-
degree system.

soft soil, it may be necessary to include the effects of distortion within
the earth adjacent to the foundation. For example, suppose a simple
frame were supported by a foundation mat as shown in Fig. 3.24a. As
forces are transmitted from the structure to the surrounding soil (or
vice versa, in the case of ground motions), the strésses and resulting
deformation in the latter permit the mass of the foundation to move.
If attention is restricted to horizontal motion (vertical motion would
usually be an uncoupled phenomenon) and the base mat is assumed rigid,
the system may be represented as shown in Fig, 3.24b. The spring con-
stants k; and &, (rotational spring) may be determined at least approxi-
mately, using basic procedures of soil mechanies.

The system has three degrees of freedom associated with the coordi-
nates y,, ys, and 6. If changes in column length are negligible, both
masses rotate by the same amount. As indicated by the equilibrium
diagrams in Fig. 3.24¢, the three equations of motion are as follows.
The first states the horizontal equilibrium of mass 1, and the second of
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mass 2, and the third states the overall rotational equilibrium about the
bage:

M+ kwyr — Ee(ye — 91— 8R) = 0
Mgjs + kalys — y1 — 6h) = F(t)
I8 + I8 + Magjh + kb = F(t)h '

where I is the mass moment of inertia. Note that, since the y's are
absolute displacements, the distortion of spring 2 is the relative motion
of the two masses minus 84, which is that portion of the relative motion
that does not cause a spring force. Based on these equations, analysis
may proceed as for any three-degree system.

The type of analysis indicated above could of course also be made
for structures on spread footings or pile foundations. For most rigid
frame structures on typical foundations, the effect of soil distortion is
not significant and may be safely ignored. Investigations of earthquake
response have indicated that foundation flexibility has little effect on
stresses in the building frame, but does affect the scceleration input;
i.e., the acceleration of the frame foundation is not the same as the free-
field acceleration away from the structure.

The support flexibility may have a significant effect on the mnatural
frequencies, and if these are in themselves important, e.g., when the
structure is part of a machine, it should be taken into account. This
has been found to be true of the supporting structures of certain tracking
radais controlled by frequency-sensitive servomechanisms,

3.9 Elasto-plastic Analysis of Multidegree Systems

Rigorous analysis of inelastic multidegree systems is in most cases not
practical, and therefore numerical analysis is usually employed. This
can be done in a straightforward manner, using the procedures presented
in Chap. 1.

When dealing with building frames which deflect into the plastic
range, it is prudent to consider the structure to be a shear building; i.e.,
the girder flexibilities are ignored. This is true because the system is
changed each time a plastic hinge is formed at any point in the structure.
For example, the stiffness coefficients shown in Fig. 3.22 are correct only
as long as the complete structure is elastic. If a single hinge is formed,
the structural system is altered and all coefficients change. These will
change again when a second hinge appears or when one is eliminated.
A completely rigorous analysis would therefore require the evaluation
of many coefficients. Furthermore, the process of keeping track of
the changing pattern of hinges is exceedingly tedious. The effort
required for this type of analysis, while not impossible,!® is seldom worth-
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FIGURE 3.25 Example. Elasto-plastic frame analysis. Structure same as
in Fig. 3.19,

while. The error introduced by adopting a shear building or close-
couplecl model is, except in rare cases, tolerable. This statement follows
from the fact that, if the response is elastic, the girder flexibilities are
of secondary importance (Sec. 3.80). These flexibilities are even less
significant after plastic hinges have formed, because the inelastic behavior

~ is usually restricted to the columns, and hence the plastic shear resistance
~ of a story is not affected by the girder stiffnesses.

An elasto-plastic analysis of the frame in Fig. 3.19 will be made to
illustrate the detailed procedure. The applied load functions are shown
in Fig. 3.25. For generality, the load-time functions, i.e., the durations, -
have been made different for the three loads. The computations are
shown in Table 3.7, as are the equations of motion. The maximum
resistance in each story is given by 49 p/h, where M is the plastic bend-
ing strength of the column section. The resistance functions are assumed
to be bilinear, as discussed in Sec. 1.5¢. The numerical procedure repre-
sented by Table 3.7 is identical with that used in Chap. 1 and employs
the lumped-impulse method as indicated by the recurrence formula
given. Since the smallest natural period is 0.179 seec (Fig. 3.20), a time
interval of 0.02 sec, or approximately one-tenth of that period, is used.
If a larger interval had been used, the computations would not properly
have reflected the participation of the third mode.
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FIGURE 3.26 Response computed in Table 3.7 for frame shown in
Fig. 3.25.

The result of the analysis is plotted in Fig. 3.26, where the relative
story displacements are shown. In the first story, only the first-mode
response is apparent, but the effect of the higher modes is evident in
the upper-story responses. Note that only the top story remains elastic.
The maximum deflection in the bottom story is about 1.3 times the
elastic limit. During the time covered by these computations, the effect
of damping is small, but if a longer period of response were to be investi-
gated, damping should be included.

3.10 Damping in Multidegree Systems

The inclusion of damping in multidegree analysis inveolves some rather
troublesome problems. This is true because there is little theoretical
means for determining the nature of the damping. In terms of the
idealized system, one cannot be sure what arrangement of dampers to
assume and, if assumed, what coefficients to assign. Experimental
investigations have thrown little light on the subject.

If a modal analysis as in Secs. 3.7 and 3.8 is being made, one may
simply assume a reasonable percentage of critical damping in each mode.
With this assumption, the analysis merely involves taking that amount
of damping into account when computing the DLFs for the modes, which
may then be superimposed as before. This is a satisfactory procedure
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since the analyst can usually estimate the percentage of eritical damping
better than he can estimate the individual damping coefficients.

If a numerical analysis as in Sec. 3.9 is to be made, including damping,
actual coefficients must in some way be determined. In order to be
sure that the coefficients are reasonable, it is advisable to relate these
to the percentage of critical damping in each mode. This relation may
be established by the following procedure. The general equation of

free motion for the rth mass of a lumped-parameter system may be
written as

Mg+ ¥ kg + 3 ontis = 0 (3.59)

where 2 indicates a series in which there is one term for each of the i
displacements. ¢, is the damping coefficient, which applies to the ith
velocity in the rth equation of motion. Equation (3.53) may be con-
verted into a modal equation for the nth mode by the substitutions

¢£n . . ¢in
I3 and i = Yr
¢rn y y ¢ﬂl

Yo =¥

Thus we obtain

LN G AT
Mryr + (Z k: d’m) Yr + (2 Cri ¢rn) Ur = 0
Bince the last equation is in the same form as the equation of motion

for a one-degree system, it is apparent that critical damping in the
nth mode is defined by [Eg. (2.25)]

(z e f;;) = 2M 0

and that the equation which may be used to compute the ¢’s is

(Z o i"") = 2Mw.C, (3.54)

where C, is the ratio of actual to critical damping in the nth mode.

In a system having N degrees of freedom, there are N2 damping coeffi-
cients to be computed. These are provided by Eq. (3.54), which repre-
sents N? equations; i.e., for each of the N modes, there is one equation
for each of the N masses. It is not necessary to solve the entire set
simultaneously, since the N equations written for a particular mass are
independent and may be solved for the N coefficients associated with

that mass. Furthermore, the matrix of coefficients is symmetric; that is,
Ciz = Cm, ate.
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P77 /s 7 7943

wy =31.6rad/sec  wy=63.2 rod /sec
#y = +1 #rz = +1
ga=+2 Fop= -1

& M=2 Ib-sec®/ft

L Ka= 2000 b/t

My=1 Ib-seci/#t

FIGURE 3.27 Example. Normal modes of damped two-degree system.

To illustrate the above procedure, consider the two-degree system
shown in Fig. 3.27, where the natural frequencies and characteristic
shapes are given. There are four coefficients to be determined from the
following four equations, all derived from Eq. (3.54):

First mode (n = 1):

Mir=1)ten X 1462 X 2{ =2 X2 X316 XC,
Mo(r=2)iean XM +eX1=2X1X316X%X0C

Second mode (n = 2):

Mir=1ecuX1l4+eX (=) =2%X2X632XC,
Ma(r = 2):1ea X (—3) + e X1 =2X1X632XC,

Suppose we desire to have 5 percent of critical damping in the first mode
(C1 = 0.05) and 10 percent in the second (C; = 0.1). The last equations
then become

cn + 2812 = 6.32

%621 + ¢22 = 3.16
¢ — €1z = 25.28
“—C21 + Cga = 12.64

The first and third are solved independently, as are the second and
fourth, and thus we obtain

€11 = +18.96 Coy = —6.32
€12 = —6.32 Cgs = +632

all in the units pound-seconds per inch. As expected, 631 = cpa.
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FIGURE 3.28 Three-degree system with absolute o
and relative damping. 3

The two equations of motion for the damped system may now be
written by substituting into Eq. (3.53) the damping coeflicients com-
puted above and the other numerical parameters given in Fig. 3.27.

29, + 6000y, — 2000y, + 18.96y; — 6.325. = 0
G2 — 2000y, + 2000y; — 6.32, + 6.325: = O

These provide the desired amount of damping,.

- When dealing with a system having many degrees of freedom, the
above procedure is rather cumbersome. Furthermore, if only a few of
the lower modes are being considered, it may not be desirable to compute
all natural frequencies as required by this procedure.

It is possible to approximate the damping coefficients and thereby
avoid the difficulties of the more rigorous approach given above. One
way of doing this is to assume two sets of dampers, one associated with
the springs and the other with the masses. The former are given coeffi-
cients, each proportional to the corresponding spring stiffness, and the
latter are given coefficients proportional to the masses. Such a gystem
of dampers is shown in Fig. 3.28, where ¢, and ¢, are constants common
to the coefficients in each set. Note that the damping forces are pro-
portional to relative velocity in the first case and absolute velocity n
the-other. Values of ¢, and ¢, may be determined so as to give reasonable
damping in each mode. This is accomplished as follows.
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The general equation of free motion of a mass r in a system damped
in this manner may be written

Mo + X kays + 3, e + .M, = 0 (3.55)

Operating on this equation as was done on Eq. (3.53), we obtain the
modal equation

M., + (2 ks i::) yr+ (cczki %) 4+ eMg, =0

which may also be written

M"g” + k:uyf + (Cak:-n + chr)yr = 0

Since this equation of motion is of the same form as that for a one-

degree system, it is apparent that eritical damping in the nth mode is
defined by [Eq. {2.25)]

(Cak:-n + M Yern = 2M oy,
Dividing both sides by M, and poting that M,/k!, must be ,?,

(ngnz + cr)cr,n = 2w,
or (cowa? + ¢r)n = Co(2w,) (3.56)

where C. i& the ratio of actual to critical damping. The advantage in
assuming this particular damping arrangement is now apparent. Equa-
tion (3.56) involves only the natural frequency, and hence relates directly
the coefficients and the percent of critical damping for each of the modes.

Since there are two coefficients to be determined, namely, ¢, and Cr,s
we may control the percentage of critical in two modes, but no more.
The usual procedure is to adjust the two coefficients until a reasonable
result is obtained. Note that, if only one form of damping had been
included (e.g., relative damping), only one mode could have been con-
trolled. In general, ¢, is more effective in the higher modes, and ¢,
in the lower.

To illustrate application of the above, suppose that, for the three-
degree system of Sec. 3.8b (Fig. 3.22), it was desired to have 10 percent
damping in the first mode and 5 percent in the third. The natural
frequencies are w; = 7.75, wy = 22.7, and w; = 33.6 rad/sec. Writing
Eq. (3.56) for the first and third modes,

(60} + ¢, = 0.1(2 X 7.75)
c,(1132) + ¢, = 0.05(2 X 33.6)
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When solved, these simultaneous equations yield

¢, = 0.00169 sec ¢ = 1.45 gec™?

Substitution of these values into Eq. (3.56) yields the damping ratio
for the second mode.

_ 0.00169(513) + 1.45 _
Cy = 3 % 997 = (.051, or 5.19,

This may well be considered a proper representation of damping in the

- system. If not, the values ¢, and ¢, can be adjusted until a satisfactory

result, considering all three modes, is obtained. The equations of
motion to be used in a numerical analysis of the damped system are
given directly by Eqs. (3.55). For example, the first of these is

Mgy + kayy + kreye + kuys + co(lngy + kg + kwags) + ¢Myh = 0

. which, together with the other two equations, can be solved in the usual

manner.

Problems

3.1 A two-degree system (Fig. 3.2) has the following parameters: M, = 4 Ib-sec3 /ft,
My = 2 Ib-seet/it, ky = 4000 1b/ft, kx = 2000 1b/it. Using & direct determination,
obtain the natural frequencies and characteristic shapes of both modes. Demonstrate
orthogonality of the modes.
Answer

o = 22.3 rad /sec

wy = 44.6 rad /sec

an = +1; g = +2

gir = +1; 29 = —1
3.2 For the system shown in Fig. 3.29, write the frequency equation in terms of
M\, M, EIL I, and k,. Neglect the mass of the beams.

M,
A aad
7 e
As
”2 '/Ef
7, | - >
L iz if2 |
FIGURE 3.20 Problem 3.2, f T Ik

4.3 Referring to the massless beam supporting two concentrated weights as shown in
Fig. 3.5, suppose that the masses are at the 3§ points of the span and that ! = 200in.,
EI = 0.5 X 10% lb-in.2, W; = W, = 10,000 Ib. Determine the natural frequencies
and characteristic shapes.
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Anstoer

wy = 28.0 rad /sec

wy = 108.3 rad /sec

@y = +1; @ = 1

G = +1;a;: = —1
3.4 For a two-degree system as in Fig.3.2, M, = M, = 1 Ib-sec?/in., and it is known
that, for the first mode, w, = 100 rad/sec, @ = +1, @y = +3. Determine the
characteristic shape and natural frequency of the second mode.
Answer

1 = 4§ a5 = —1g

w2 = 245 rad /sec
3.5 A three-story building frame aa in Fig. 3.4a is to be considered as a shear building,
i.e., & close-coupled system as indicated in Fig. 3.4b. The following data are given:
M) = M, = 3 kip-sect/ft, M, = 2 kip-sect/ft, &, = 1000 kip/ft, k; = 800 kip /ft,
k: = 600kip/ft. Using the Stodola-Vianello procedure based on stiffness coefficients,
determine the natural frequencies and characteristic shapes of all modes.
Answer

w1 = 8.41 rad/sec

wy = 21.0 rad /sec

wy = 20.2 rad /sec

3.6 Referring to Prob. 3.5, determine the flexibility coefficients for the system and
write the equations of motion in these terms. Demonstrate that the Stodola-Vianello
procedure now converges first on the fundamental mode.

3.7 For the system in Prob. 3.5, obtain the fundamental-mode frequency, using the
Rayleigh method based on the dead-load shape.

3.8 Continuing Prob. 3.7, refine the fundamental-mode shape by additional cyeles
and obtain the higher-mode frequencies and shapes, using the Schmidt orthogonaliza-
tion procedure.

3.9 Demonstrate the validity of the Lagrange equation by using it to write the
equations of motion for the two-degree system in Fig. 3.6.

4.1¢0 Write the modal equations of motion (Eq. 3.44) for the system of Prob. 3.1.
3.1 Write the modal equations of motion (Eq. 3.44) for the system of Prob. 3.3.

3.12 Consider the two-degree system and the modal parameters shown in Fig. 3.27.
Using modal analysis, derive expressions for the displacements of the two masses as
functions of time for the following cases: (a) a suddenly applied constant force of
1 kip applied to mass 2; (b) mass 2 is given & downward displacement of 1 in. (while
mass 1 is held in place), and both masses are then suddenly released. Evaluate all
numerical terms. Hint: In (b) the initial displacements may be broken down into
modal components.

3.13 The three-story building frame of Prob. 3.5 is subjected to a suddenly applied
constant horizontal force of 50 kips at the second floor. Make a rigorous modal
analysis, and plot the deflection of the top floor up to the first peak of response.
Answer

Yomax = 0.242 ft

J.14 Referring to Prob. 3.13, determine the total shear in the top-story columns
at the time of maximum roof deflection.
Answer

V = 17.5 kips at ¢ = 0.36 sec
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3.15 The two-degree system shown in Fig. 3.30 is subjected to the force F, =100
sin 2 1b. Assume no damping:

a. For @ = 50 rad/sec, estimate the maximum steady-state displacement of M 2 by
adding numerically the modal components,

b. For @ = s, the naturai frequency of the second mode, estimate the displacement
of M, after one cycle of load. Hint: See Bec. 2.5a.

My= 2 Ib-sec?/ft

42=40001b/ft

Alt)
! M, =11b-sec?/ft

4= 2000 Ib/ft

FIGURE 3.30 Problem 3.15,

’

3.16 A single-story frame on a flexible foundation may be represented by the system
shown in Fig. 3.31. It is assumed that only rotation (no vertical or horizontal transla-
tion) of the foundation is possible. kg is the rotational spring constant at the base,
and I, and I, are the mass moments of inertia. Determine the natural frequencies,
and write the modal equations for the case of a horizontal force as ghown,
i) F(t)
i ——iip

SALSISTIIES S,

My = 1kip-sec?/ft
Iy =40 kips-sect-ft

£ =500 kips /Ft

I, =80kips-sec? -t

kg =120,000 kips-ft /rad

FIGURE 3.31 Problem 3.16.

3.I7 Rewrite the equations of motion for the three-degree system of Prob. 3.5 so
as to include damping. The amount of damping is to be 10 percent of critical in the

' first mode and 5 percent in the second and third modes.
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Structures with Distributed
Mass and Load

4.1 Introduction

All structures are in reality distributed mass systems since massless
springs as assumed in previous chapters are physically impossible.
However, some structures may be elosely approximated by lumped-mass
systems if, as in the case of the building frames discussed in Chap. 3,
the mass of the springs is small compared with the mass concentrations
at points between springs. For other classes of structures, such as
beams with mass distributed along the span, it is often easier to solve
the equations based on the continuous-mags system than to convert the
member into an equivalent lumped-parameter system. It is the latter
class which is the subject of this chapter. :

If the mass is continuously distributed, there are an infinite number
of degrees of freedom, since any small element could be considered as a
discrete particle connected by springs to all other elements. However,
only a few of the lower modes have responses of any significance for
practical purposes, and in some cases only the fundamental mode is of
importance. Therefore analysis usually begins with the isolation of the
lower modes and determination of the natural frequencies and charac-
teristic shapes of these modes. The modal responses may then be com-
puted and superimposed in much the same manner as for a lumped-mass
system.

With the exception of Sec. 4.8, the treatment in this chapter is restricted
150
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to linearly elastic systems. Approximate methods for handling inelastic
responge are given in Chap. 5.

4.2 Single-span Beams—Normal Modes of Vibration

Consider the beam shown in Fig. 4.1, where m is the mass intensity in
lb-sec?/in.? and p is the load intensity in Ib/in. The mass is, for the
present, assumed uniform along the span, but p may be a function of
both ¢ and z; that is, p varies both with time and position along the span.
The dynamic equilibrium of an element of length is also depicted in
Fig. 4.1, where 9% is bending moment and V is shear, both positive in
the conventional sense as shown. The net load intensity w on the
element is

w = p(t: x) - my

positive load being in the same direction as positive y. Since moment,
load, and deflection are related by

- %y
M= —KEI o
kL L I _
ot~ Blgi= —w
we may write
dty
Bl e + my = p(t, x) (4.1)

where EI is the rigidity of the beam, which is assumed constant along
the span. Partial derivatives are indicated since y is a function of ¢ as
well as .  Equation (4.1) is the equation of motion governing transverse
vibration of the beam. If this equation ean be solved, the result will
be the beam deflection as a function of both time and position along
the span.

Several noteworthy approximations have been made in the derivation
of Eq. (4.1). First, shear deformation of the member has been ignored,
and second, rotation of the element in Fig. 4.1 has not been considered.

pitx) lpd’

¥,
fm( \ ? \ > TM+dM
P s tmany |1

_— l |

| I dx V+dv

FIGURE 4.1 Simple beam with distributed mass and load.
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As the beam deflects, such rotation must oceur, and this results in rota-
tational inertia moments which affect the equations of dynamic equilib-
rium. For slender beams, a classification which includes a great majority
of actual cases, neither shear nor rotational effects are important and no
further attention is given to them herein. Many investigations of this
subject have been made and reported in the literature.s519

In any normal mode, by definition,

p(t,z) =0 and yu(l, ) = fu(®.(2)
where fu(f) is & time function, and ®.(z) is the characteristic shape with

some undetermined amplitude. We may also write

. ; A%y, d*

Y = fn(‘)én(x) and E:‘BT = fn(t) d";:] Qn(x)
where .. is the second partial derivative of y, with respect to t. Substitu-
tion in Eq. (4.1) provides

EIf() 2, 2.0) + men@) 1) = 0

EI 4t X0
%@ &5 O = T 1o

Since the left side of Eq. (4.2) varies only with x and the right side only
with {, each must be equal to a constant, which, as will be seen below,
is equal to w,?. Thus, by setting each side equal to w.?, we may write
the two equations

or (4.2)

(a) .-fn(t) + w,.’f..(t) =0
4 2
(b) %,‘ ®,(z) — % Ba(z) = 0 (4.3)
The solution for the first of these is
fn(t) = 01 Bin w,.t + Cz Cc08 w,.t (4.4)

which merely indicates that the time function is harmonic with natural
frequency wy, and hence that Eq. (4.2) is valid for normal modes. The
solution of Eq. (4.3b) is

(7)) = @y 8D G,z + ®, CO8 @uk + ©, sinh Gz + Da cosh gz (4.5)

‘4 Mw,?

h = o [
where G T
Equation (4.5) is general in that it may be applied to spans with any
type of end restraints. The constants may be determined by considera-
tion of the boundary conditions of the particular problem.
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m, E7
1st mode
7755 l ¥ G n=1
e reuy's
S |
1
ntr? [EI o 2d mode
2 RTE fLS 3 . .
Wn= 2 m n=2

$alr) = sin Z7E
g,c‘g‘q 3d mode
i ‘n=3
F1GURE 4.2 Normal modes of simple beam with uniform mass.

a. Hinged Supports

At both ends of a beam with simple hinged supports (Fig. 4.2), the
boundary conditicns are y =0 and 9 = 0 or d%/dz* = 0. Since
Yn = fa(®)P.(x} and f.(!) cannot be zero at all times, it follows from these
boundary conditions that

&, (x) =0 atz =0andz =1
de
@q:n(z)_o atr=0andz =1
SBubstituting z = 0 into Eq. (4.5) and into the second derivative of that
equation, we find
0= By + D.
0= —(Bnanz + i)nanz

from which it follows that both ®, and D, must be zero. Making use

of this conclusion and substituting x = [ into Eq. (4.5) and its second
derivative, we obtain

() = 0 = @, sin a,l + ©, sinh a,l
2
Ed? P.(l) = 0 = —@,a,? sin a,] + C.a,? sinh a,l

Adding and subtracting these two expressions after canceling a,? from
the second,
2¢, sinh al =0
2@, sin al = 0

‘Bince sinh a.! cannot be zero, €, must be zero. Furthermore, @, = 0

is a trivial solution; i.e., it represents no vibration, and therefore the
frequency equation must be
sin a,l =0

or a, = %E - (4.6)
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where n is any integer between 1 and infinity. Based on this result
and the fact that 8, = @, = D, = 0, the natural frequencies and charac-
teristic shapes are determined. From Eq. (4.5),

. - Moy,?
@ = ET
2.2 (BT
Therefore Wy = nl;r % 4.7)
and d.(z) = @, sin oz (4.8a)

Since @, is arbitrary, we may let it be unity and define the characteristic
shape as

¢.(z) = sin ”’l’"’ (4.8b)

The fundamental mode is given by n = 1, the second mode by n = 2,
etc. The natural frequencies vary with n? and therefore are in proportion
to 1, 4, 9, 16, etc. The characteristic shapes are all sine waves, that for
the fundamental mode being a one-half eycle, for the second mode a full
cycle, etc. The first three characteristic shapes are shown in Fig. 4.2.
It is of signifieance that odd modes are symmetrical and even modes
antisymmetrical. The total deflection, for any given situation, obtained
by superimposing modes is simply

b2 = 3 A sin 7 (4.9)

n=l

where the A,’s are determined by the loading conditions as discussed
in Sec. 4.3.

b. Fixed Supports

If the beam is fixed against translation and rotation at both ends, the
boundary conditions are

d
y=0 and d—?;= atz =10,!
or ®,z) =0  and dii.qa,.(z) -0 atz=01

Substitution of the latter and z = 0 intc Eg. (4.5) and its derivative
yields

®,0) =0 =G, + D, Dp = —®By

d
"E@n(o) - 0 = anan + euam en - —an
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Therefore Eq. (4.5) becomes
®.(xr) = @.(sin a.x — sinh a,z) + ®.(cos a.x — cosh a.z)
and, for x = I,
®,(1) = 0 = Q.(sin a.l — sinh a,l) 4+ ®.(cos a,l = cosh a,l)

4 ®,(1) = 0 = @aga(cos @l — cosh a,l) + ®,a.{~ sin al — sinh a,l)

For @, and/or &, to be other than zero, which is a necessary condition

for vibration, the determinant of the coefficients must be zero.

{sin a,! — sinh a,) (cos a.d — cosh a.l)

(cos @,l — cosh a,l) (—sin a.d — sinh aud) | 0

When the determinant is expanded, this equation reduces to

cosalcosha,l —1 =10 (4.10)

" which is the frequency equation for a fixed-ended beam. The roots of

this equation are closely approximated by
= (n + M) n=1,23,
or &= (n+ 397

and the natural frequencies are given by

mw,,

act = "0 = 4 3T

Therefore Wy = % A }"}E (4.11)

and hence the modal frequencies are in proportion to (1.5)%, (2.5)%
(3.5)%, ete. It may be noted that the first-mode frequency is 2.25 times
that for a simply supported beam [Eq. (4.7)].

The characteristic shapes are more complex in this case. It is apparent
from the expression for ®,(I) above that

@\ _ cos a.l — cosh a.l
®/), sinh @, — sin a,]

Therefore the characteristic shapes (after reversing signs for convenience)
may be expressed by

tE.tm) = A. [(g) (¢inh a,r — sin a.x) + cosh a.x — cos a.,:c] 4.12)
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: m, E7 |7 4 [ 1st mode
g ‘y |4 4 ~—_ " F =1

Y 2d mode
, n=2

L0.362
’ 3d mode
wy%-ﬁ n=3

F16URE 4.3 Normal modes of fixed-ended beam with uniform mnass,

o ave)2a? [FT
T fm

where 4, is an arbitrary amplitude, but (@/®), is a definite constant
for each mode. Values of the latter are tabulated in Table 4.1. The
shapes of the first three modes are indicated in Fig. 4.3.

¢. Fixed-hinged Beam (Fig. 4.4)

Proceeding in exactly the same manner as before, we introduce the
boundary conditions

¥y=20 at x = 0,1
dy

E—=0 atz =0 and =—= =0 atx =1
m .

This leads to the frequency equation
tan ¢,l = tanh @,!
The roots are given with sufficient accuracy by
al = (n 4+ 3)x n=123 ...
and the natural frequencies are

o, = (0 F IO BT

2 m

(4.13)

The first mode has a frequency 1.56 times that of a simply supported
beam. The characteristic shapes may be expressed as

u(z) = Aa [(g) (sinh g,z — sin a,x) + cosh ¢.z — cos a“z] (4.14)

a o8 a,l — cosh a,l
h =] == -
where ((B).. sinh a,! — sin a.l

The first three modal shapes are indicated in Fig. 4.4.
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FIGURE 4.4 Norinal modes of fixed-simply supported beam with uniform mass,

d. Cantilever Beam

The boundary conditions for this case are

'*@-—0 at 2z = 0

._.dx_
dy _ dy _ -
d‘—xz—&zc—a—o atx =1

The third derivative must be zero at the free end since, in a normal
mode (free vibration without external forces), there can be no shear at
this point. By introducing these boundary conditions into Eq. (4.5)
and proceeding as in previous cases, the frequency equation is found to be

cosaleoshad+1=0

The first root of this equation is a0 = 1.875, and the higher roots may
be closely approximated by

a.l = (n — Lg)r ne=234, ...

Thus the natural frequencies are

(0.597x)2 \/E*T
Wy = —
m

i
and Wy = —(ﬂ—_l—f@fﬁ A "ﬂ n>1 (4.15)
m

It may be noted that the frequencies for a cantilever are the same as the
next lower mode of a fixed beam; ie., the second mode of the cantilever
has the same frequency as the fundamental mode of a beam fixed at
both ends. The natural frequency of the first mode is 0.356 times that
for a simply supported beam.
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FIGURE 4.5 Normal modes of eantilever beam with uniform mass.

The characteristic shapes for a cantilever beam are given by

$.(z) = A, [(9) (sinh @,z — sin a,z) + cosh a,x — cos a,,x] (4.16)

®
(G.) _ _ ©08 a.l + cosh a.l

® Sin @, + sinh a.l

h
where B

These are indicated in ¥ig. 4.5.

4.3 Forced Vibration of Beams

To determine the response of beams due to applied dynamic forces, use
will be made of Lagrange’s equation in the same manner as previously
for lumped-mass systems. The dynamic deflection may be represented
by the summation of the modal components:

y(t, ) = D, Auta(a) (4.17)

where A, is the modal amplitude (which varies with time), and ¢.(z) is
the characteristic shape. The velocity is given by

¥, 2) = 2, Antul®) (4.18)

For use in Lagrange’s equation the kinetic energy of the complete system
i8 expressed as

X = lgm f: ytdr = lym [: [i An¢n(x)]2d$

where m is the uniformly distributed mass, and the integration pro-
vides the summation of all kinetic energy along the length of the beam.
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Expanding the series, the last equation may be written as

% = 3gm [ [i 492@ |+ m [ {3 [dubn@N A ntnte)l} o

where the series in the second term indieates the sum‘of ali the modal
cross products. The contribution of one of these cross products may be
written as

m LI Autn(2YA nm(z) dx
or replacing the integral by a summation,
i
El [An¢u(xr)][Am¢m(xr)]m Ax

where j is the number of discrete elements into which the beam is divided
for the purpose of summation. The expression may also be written as

Anda _);1 M (2 dnlzr) (4.19)

The orthogonality condition as expressed by Eq. (3.13a),
i
E Mrarnarm =0
r=1

indicates that expression (4.19) must also be zero since ¢(x,) and a,
are identical in meaning. Thus the entire second term of the expression
for X is zero and ‘

% = 3om [ Aioni ] ae

= Yom Y At [ 0.2() do (4.20)
ax ‘ t
Furthermore, v =md, [o .2 (x) dx
d ax

and

.- A
T3 mi., [ b2(x) dz

The work done by external dynamic forces during an arbitrary distortion
is

W, = f: plt, ©) [i A..%(x)] di
= [ 10m@) Y Antnle) ] do (4.21)
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where f({) is the load-time function, and p,(z) is the load distribution
along the span, which may be any function of . The rate of change
of external work with respect to 4, is therefore

g:f: =1 [: P1(2) $a(z) dee

Writing the Lagrange equation (3.36) with damping omitted and
substituting from the above, we obtain

dox o _ow,
dt g4, ' 94, 94,
. i ou l
i [ o) dr + 7 =50 [ ma@ ds @22)
It is unnecessary to evaluate the strain energy U since we know by

previous experience that, if the last equation is divided by the coefficient
of 4., the coefficient of A, becomes w,2. Thus

F® LI P1(z) Palz) dz

4;{“ + f-"uzAn = 7
mj; ¢2(z) dx

(4.23)

which is the equation of motion for the nth mode and completely analo-
gous to Eq. (3.46) for lumped-mass systems. The modal static deflec-
tion is defined by

1
[, pr@)6nia) dz
A = ; (4.24)
waim fo oa2{z) dx
The modal response is given by
A.(t) = A..(DLF), (4.25a)
and the total response by
Y(w, ) = 3 AD)da(2) (4.250)

where (DLF), is the dynamiec load factor for the equivalent one-degree
system of the nth mode. These equations are analogous to Eqs. (3.47)
to (3.49) for lumped-mass systems and could, in fact, have been deduced
directly therefrom.

Equation (4.23) is completely general and applies to beams with any
support conditions and with any type of load distribution. If the loads
are concentrated rather than distributed, the integral in the numerator
of the right-hand side merely becomes a summation having one term
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Table 4.1 Integrals of Characteristic Functions for
Beamns with Various Support Conditions

¢(z) = (%) (sinh @.z — 8iD @,7) -+ cosh @nz ~ €OS @nr

1
Beam type Mode (@/®), ] ¢(x) dz
[

) 1 —0.9825 0.83081

H 2 —1.0007 0
’ 3 —1.0000 0.3640!
) 1 —1.0007 0.8604
g—-_& 2 —1.0000 0.0829¢
3 —1.0000 0.33431

[y

—0.7341 0.78301
—1.0184 0. 4340!

i 3 -0, 9992 0.2b6441

4
For all beam types shown and all modes [ oz} dx = 1
[:]

|~

for each load. The execution of the integration becomes tedious for
other than simply supported beams because the echaracteristic shapes
are rather complicated functions. Values of the integrals are given in
Table 4.1 for the first three modes of some commonly encountered beam
types.

a. Concentrated Loads

Consider the simply supported beam shown in Fig. 4.6a, which is
subjected to a concentrated dynamic load at midspan. The 1odal
characteristic shapes [Eq. (4.80)] are

#u(a) = sin 77

and the numerator integral in the right side of (4.23) is replaced by

[ pr(a)e(e) dz = i Fou(cr)

where ¢r is the location of the load F. In this particular cage, there is
only one load, and ¢ = I/2. Therefore

F
Z Féolcr) = Fy8in 1’&2_1r
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and

L2 = [l ™ L
fﬂcﬁ,,(a:)d:c ﬂsm 7 da:—2

The modal equation of motion obtained by substitution into Eq. (4.23) is

A 24 o JOFysin (nw/2)
An+0)n An— W— (4.26)

the solution of which may be obtained as for any one-degree system.
By Eq. (4.24), the modal static deflection is

A — F, sin (nr/2)
nat wtml/2

From the latter it is apparent that all even modes contribute nothing
to the deflection at any point since sin (nx/2) = 0. This is true beecause
such modes are antisymmetrical (Fig. 4.2) and are not excited by a
symmetrical load. Tt may also be stated that there is no response in a
mode when the load is applied at a node in the characteristic shape of
that mode.

To define the example further, let us suppose that the force F; were
suddenly applied and constant. Then, by Eq. (2.12),

(DLF), = 1 — cos wa!

— Alree]
m, ET
@) g - .
1
if2 if2 ’ FALf2)
—
(@) EI[H]IUEIHBI ﬂ]ﬂll[ﬂg”
Alrcen l £ —
TIF ~ =,
4]
s 31/ l alriei]
{e)
e 7,
AlF] [ﬁ[f(t]] (R S -7 —
(¢}

b e

FIGURE 4.6 Simple beam subjected to various load distributions.
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and the modal response [Eq. (4.25a)] is

_ Fysin (nr/2)
An = W (1 — ¢OB w“t)
The modal deflection at any point along the span is .

Fy sin (na/2)
w,.zml/ 2

(1 — cos w,t) sin e

Yn = Anda(z) = T

The total deflection at any point and at any time is obtained merely
by superirnposing modes.

= %‘ % 8in %I (1 — cos w,f) sin ﬁi—x (4.27)

To illustrate further, the dynamic deflection at midspan (z = 1/2) equals

n
¥ (1: = %) = %25{? sin’%lr {1 — cos wat) (4.28)

It is also of interest to compare the contributions of the various modes
to the midspan deflection. This will be done on the basis of maximum
modal amplitudes without regard to the manner in which the modal
displacements actually combine. The amplitudes will indicate, in gen-
eral, the relative importance of the modes.

In Eq. (4.28) the DLFs all have maximum values of 2, and may be
eliminated from consideration. Furthermore, since the sines are all
unity for the odd modes, the modal contributions are simply in propor-
tion to 1/w,2.  Therefore the maximum modal deflections are in propor-
tion to 1, 14, and }§25 for the first, third, and fifth modes, respectively.
It is apparent that, in this example, the higher modes contribute very
little to the midspan deflection.

Suppose now that the concentrated load is at the left quarter point
of the beam, as in Fig. 4.6b. The load integral in Eq. (4.23) is, in this
case,

P
l .
E Féu(cr) = Fréa (E) = F, sin %r
and the total deflection would be given by

28,
ml

Z 513 sin ?'43 (DLF), sin nrr (4.29)

yix) = 7

which corresponds to Eq. (4.27). In contrast to the previous case, which
involved a load at midspan, the second mode now makes a contribution
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to the dynamic deflection. If the maximum DLFs are the same in all

modes, Eq. (4.29) indicates that the ratio of the first- and second-mode
amplitudes is '

Al _ m22 sin 'll"/ 4

A: " wisin /2

Thus, even in this case, the major contribution is made by the first mode.

If the load distribution were antisymmetrical, only the even modes

would be exeited. For example, if equal but opposite loads were applied
as in Fig. 4.6¢,

= 16(0.707) = 11.3

F
ZF¢’1(CF) = Fi¢n(cr) — Figall — ¢)) = F, [sin ?}1;_61 — gin na(l 1— Cl)]

where the negative sign indicates that the load is upward. This expres-
sion is zero for all odd modes because these are symmetrical and the two
sine terms are equal. The total dynamic deflection could be expressed by

oy = 213 1 [smﬂ’% _ gn G ~ &)

ml L w,?

] (DLF), sin -’3“355 (4.30)

b. Distributed Loads

If the loads are distributed, the integration indicated in the right side
of Eq. (4.23) must be executed. For example, consider a simply sup-

ported beam with uniform load distribution as in Fig. 4.64. The load
integral is

1l

[ p@ou@) do = pu [ sin " d

_ _pd -
== (cos nr — 1)

= 2pd n odd only
nx
Thus, as would be expected with a symmetrical loading, only the odd
modes contribute. The total response as given by Eq. (4.25) is therefore

y(x) = %i

where (DLF), is simply the DLF for a one-degree system subjected
to the same load-time function as that for 1. Sinee n appears in the
denominator, it is apparent that higher modes are even less important
here than in the case of concentrated loads. This is true because the
load distribution is similar to the characteristic shape of the first mode.
In fact, if the load distribution were the same as that shape, i.e., if

1 .
i (DLF), smL’lm n=135 ... (431)
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px) = pi sin {rz/1), only the first mode would be excited and the econ-
tributions of all other modes would be exactly zero.

If the load had been uniformly distributed over one-half the beam
as in Fig. 4.6e,

f: 21{(2)¢a(x) do = py faw sin?%r—;E dar

- nd (1 - cosn—w)
v 2

The total dynamic beam deflection would then be given by

_2my 1 __mr . mrx
y(x) = o z . (1 cos ?) (DLF)}, sin - (4.32)

e. Dynamic Stresses

In order to determine dynamic stresses we need only apply the well-
known relationships

— _pr
Mm = EI(.’—:E2
aMm

V=3

for bending moment and shear. Thus the computation involves only
the differentiation with respect to z of the expressions given above for
dynamic deflection. For example, in the case of a simply supported
beam with uniformly distributed load, Eq. (4.31) may be operated on
to obtain the following:

"

@ on= PN T L), sin T
2 & i
® v=4Cm YO eos™E m=1,3,5 ... 43)

Note that, in going from deflection to moment to shear, the higher modes
become increasingly important, as indicated by the increasing power of n.
To illustrate, the amplitudes of the first and third modes, neglecting
possible differences in DLF, are in the following ratios (note that w,?
is proportional to n4):

T 35 = 243
Ya

My a5 _
G, = 8 =27
Vi_a o
Va_3 =9

This tendency is generally true of beam response.
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Equation (4.33b) may be used to obtain the dynamic beam reaction
by substituting x = Qor z = {:

4EIpmt 2
_ Elpr E wlz (DLF), n=1335 ... (4.34)

mi®

Vz—o

When the first mode dominates the response, it is possible to obtain
approximate deflections or stresses directly from the static values of these
quantities. For example, the maximum dypamic bending moment at
z = /2 for the uniformly loaded beam may be closely approximated by

2
Mpmijz = %ﬁ (DLF),

The corresponding value given by Eq. (4.33a), neglecting higher modes, is
4rEIp,

Mayyz = W (DLF)I

or since wn? = #w*EI/ml4,
Moy = % pil3(DLF); = 0.129p.2(DLF),

The close agreement between these two computations is due to the fact
that static deflections can also be expressed in terms of modal compo-
nents, and for a uniformly loaded beam the first mode dominates both
static and dynamic response.

d. Examples

To illustrate application of the foregoing developments, suppose we
were interested in the maximum deflection and stresses produced in a

AL
‘ £ = 30001b
E7 = 6.1%107 |b-in?
= 7% X
i " n lr o i ’ m = 0.2 Ib-sec?/in?
P T A
ot
*y
b
ol -
0 0.1
L, sec

FIGURE 4.7 Example. Simple beam with concentrated dynamic
foree.
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simply supported beam by a concentrated force such as shown in Fig. 4.7.
The mass, which includes the weight of the beam, is assumed to be uni-
formly distributed. The natural frequencies, by Eq. (4.7), are

_n? Bl nw 61X 10° s
“nETE N T (80 03

w = h3 wy = 212 w; = 477 rad/sec

and
T, = 0.118 T, = 0.0296 T: = 0.0132 sec

Higher modes will be negleeted.

It is apparent from the discussion of Sec. 4.3a that the dynamic deflec-
tion is given by

y(z) = 2F, —1—2 (sin mrcl) (DLF), sin ez

mi Wn l l

where ¢1 = 6 ft. Substituting the numerical values given, we obtain
the modal deflections ‘

1(z) = +0.0565(DLF), sin$ in.
ya(z) = +0.00218(DLF), sin 3"1’3 in. (4.35)
ya(z) = —0.00043(DLF); sin o™  in.

l

Restricting attention to maximum modal defiections, the DLFs may be
obtained from Fig. 2.7 as follows:

e 01 ~
T, 0118 0.85 (DLF)1max = 1.48
fa 01 _
_lT—ﬂ - m =34 (DLF)‘Z.max = }1.8B5
ta _ 01 ~
7. =0z~ 70 (PLF)ume = 1.94

Inserting these into Eqs. (4.35), we obtain the modal deflections (at the
time of maximum modal response).

¥1 = +0.084 sin"'—l‘" in.
ys = +0.0040 sinz%x . (4.36)
3rx

Ys = —0-00084: Si.n T 1.
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It is apparent that the second mode contributes little and the third mode
could well be ignored. These maximums could be added numerically
to obtain an upper bound of deflection. A more exact determination
would reguire consideration of the time variation of modal responses
and could, if necessary, be accomplished by the use of Eqs. (2.17b) and
(2.18b), which give DLF as a function of time.

The maximum (timewise) modal bending moments may be obtained
by double differentiation of Eqs. (4.36).

- _pr 9%
2
M,y = +o.os4’f%sm"—f = (15.6 X 10%) sin”—l‘” in.-lb
2
s = +0.0040 L i 2%” ~ (30 X 10%) sin 2% in.-Ib
2
oMs = —0.00084 T2 Gin 37T _ (14 % 10950 P inb

I [ l
At the point of loading (:ﬁ = 6 ft), these moments become

o, = 14.8 X 10¢ in.-tb
e = 1.7 X 104 in.-lb
M = 0.8 X 104 in.-lb

The maximum (timewise) modal shears are obtained by

aMm
V=%
V. = 2720 cosllx- b
Vs = 1050 cbs&l'}‘ Ib
Vi= —740c0s 7% v

l

The maximum (spanwise) shears which occur at = 0 are also the left
beam reaetions and are equal to the coefficients of the cosines just given.
The second and third modes are in this respect more important, and the
numerical addition of modal shears or reactions may be too conservative.
If s0, one would have to consider the actual time variation of DLF in
each mode.

As a second example, let us consider a prismatic, fixed-ended beam
subjected to a uniformly distributed dynamic load. Only the first mode
will be considered. The characteristic shapes are given by Eq. (4.12).
The general equation of motion is Eq. (4.23). The values of the integrals
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on the right side of the latier equation are given in Table 4.1, and there-
fore the equation becomes

(t) X 0.8308!

i t
4A) + w?d, = 2 X 1 = (.831 p——~lﬁ)

-

where pif(f) iz the time-varying load and m the mass, both per unit
length. The modal static deflection as given by Eq. (4.24) is

. ”m
A]_.g = 0.831 wlzm

and the dynamic response is

Ax(t) = 0.831 -PL (DLF),

wﬁm

where (DLF); depends upon f(f). o
The dynamic deflection at any point along the span is given by

y(z, 1) = Ai()$1(x)
= A1(t){—0.9825(sinh a1z — ®in a.2) + cosh a;x — cos a1x]

where a;, = 3x/2l, and the quantity —0.9825 is @/® as defmed. in See.
4.2b and given in Table 4.1. The deflection at midspan, obtained by
substituting x = 1/2 and the expression given above for 4,(), is equal to

[#())omisz = 1.32 fl;n (DLF),

w

4
- 3.8211:‘EI (DLF)1

The dynamic bending moment is found by

ylz, ¢t 3%¢:(x)
Mi(x, t) = —EI y;:,—) = —EIA) —

After substituting for A.(t) and 8°¢1(x)/32? this expression may be
reduced to

Mylx, t) = ~—0.0376p,I2(DLF),| —0.9825(sinh a1z + sin a;x)
+ cosh a1z -+ cos az)

from which the maximum moment in the span is found to be
[y (D)) zmo = —0.075p, 2 (DLF),

The responses in higher modes eould be obtained in the same manner,
making use of the numerical values in Table 4.1.
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4.4 Beams with Variable Cross Section and Mass

In the preceding sections we have dealt only with prismatic beams.
If the cross-section properties and/or the mass vary along the span,
it is usually necessary, or at least advisable, to adopt numerical methods.
Perhaps the best procedure is to use the modified Rayleigh method
(Sec. 3.5) to obtain natural frequencies and characteristic shapes. With
this aceomplished, modal analysis of the response may be executed in
the usual manner. This procedure is illustrated below by the analysis
of a simply supported, nonprismatic beam. The method is, however,
perfectly general. It could be applied to single spans with any end con-
ditions and also to eontinuous beams.

a. Example

The simple-span beam of Fig. 4.8 has in its central half a mass intensity
of m,; and a stifiness K1, while in the outer quarters of the span the
corresponding quantities are m, and Ef,. We desire to obtain the
response (deflection and bending moment) due to a uniformly distributed
dynamie load p(f) which has the time function shown.

In order to obtain the natural frequency and characteristic shape, the
beam will be converted into a lumped-parameter system. For this
purpose the span is divided into 20 equal segments, but because of
symmetry, only one-half the span need be considered. Tach section
will have a mass M, = m (Az) and an applied load F.(f) = p(?) (Az).
All quantities (deflection, bending moment, ete.) will be computed at

F 183
m, = 0.05b-sec?/in2
[ mp = 0.10 lb-sec?/in2
£f, = 5x109 Ib-in?
7%7 " 1 n 4 ' 9 -3
50 100 50 Elp = 20 X10% Ib-in?
my, 4 Mg, f my, 4y
[
Ar=10" ¢ 5
"| | ,;.pl - ]
|1t [ 1114 :':S, )
o 1 s !
I 2t3lalslsl71elaliof sections 1

0.1 2, sec

FIGURE 4.8 Example. Analysis of simple beam with variable mass and stiffnesa.
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the centers of the segments. The precision of the solution obviously
increases with the number of segments.
In Sec. 3.5 the natural frequency is given by Eq. (3.25), or

JE Fo ¢H .
w? = _Jjjl_

A7 Y MA4))

r=1

where F.; = M,¢,, ¢, is an assumed shape, and ¢, is the shape caused by
the forces F.. (normalized so that A’'¢. is the true deflection at r). In
this example only the fundamental mode is considered. Higher modes
could be included by the method given in See. 3.55, but it is obvious
in this case that these would not be important.

The computations leading to natural frequency are shown in Table 4.2.
The assumed shape in the first cycle is taken as & sine curve because it is
expected that the true shape will not be radically different from that
for a prismatic beam. The deflections due to F,;, that is, A”¢.’, are
caleulated by the conjugate-beam method, in which the bending moment
due to the elastic load is equal to the deflection. Any other procedure
for computing deflections could have been used. The deflection at
section 10 is arbitrarily taken to be A”, and when all deflections are
divided by this value, the result is the computed shape ¢.. Comparison
of ¢." and the assumed shape ¢, is indicative of the accuracy. For the
second cycle the shape assumed is that computed in the first ¢ycle. The
final shape in the second cycle is very close to that obtained in the first,
and therefore convergence is satisfactory. Based on the summations
at the end of the second cycle, the natural frequency of the first modeis

5.017
= 113,760 X 107 X 5.050 _ 520
@) = 94.1 rad/sec T, = 0.0667 sec

s£||)12

The equation of motion is obtained by Eq. (3.46),

i
5@ 3, Fusy
AL+ wd; = 7 r=1

2, Mi(e!'y
r=1

where F,, is the maximum load at segment r and is for all segments equal
to pi (Ax). The summations sre evaluated in Table 4.2. The modal
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2 § S %é static deflection is, by Eq. (3.47),
o M 1 w18 ;
JOE e "
33 $3% 2, Fré:
B R N A = —=
. w ) M(¢))? .
S| -2852<E3888 8882288885 21 -
& meoody s o s qi.-...;.-;s' 6940)(2
-] - - — - »
= 8850 X 5030 3 ~ (LO6POI0  in
3| 25522235232 /2885852884
- oS 1 - D . » . . .
“ 8 g°°° ®=-~gg g°°c=- The maximum DLF for this load-time function (Fig. 4.8) may be
" - = obtained from Fig. 2.9. Entering this chart with
3 | -88:098358 33002283288 ) :
o —ccﬂig §¢:<=o GQN§§ §oaaa t,-/T=0.1/0.0667=1.5
- sgs. ssss - - T we obtain
3 =8BT8 E3823 5830 BE888s (DLF)mex = 1.20
$ Thus the maximum dynamic deflection (at section 10 since A" is based
[ | 3| oBB8s=3%58% HuBas535854 on this point) is
2 3 v-=:=:v§§ goss dc'w'g:g gfoc-ouu
E (ylo)mnx = Alet(DLF)max = (1‘871)1)10—8 11
2 “ BBt BEs |BrBeal28E8RS ; . . .
5 £ 2 § Ha bt 3; 8&|skc28g Ef S8b and the deflection at midspan would be only slightly larger. The maxi-
=3 - - . - .
é &= == mum dynamic bending moment at midspan may be closely approximated
— — - . . . «
~ p 8855358828 |85%s sEE858 ;% by the static moment times the maximum DLF.
N =3 PO oSS O S W o neEe s
g 28 22 Mmax = 2¢ml® X 1.20 = 0.15p,82
= "
g T | -B282s38E8Z | ERExgFREI2s Higher modes do not contribute appreciably to either deflection or bend-
=R - - . 3 - v . » .
& = g wS° o= gy @ece~ ing moment. As discussed in See. 4.3, it might be desirable to include
2 - e = the third mode (the second does not contribute in this symmetrical case
= . =4 3 % g o § on Wy o § -] b Y y
* =] ] 3 - @ = ] 3 . N -1 -
g i k] laliatis SaSoo g f Sceg g 8 G o § o if sh(?ars or reactions were to be computed, although the contribution
o - - of this mode would not be great.
s= | - " = . ) )
S5 3 ~EE8=g § §835|282a3 z gzggf The above method is a Powgrful_tool because of 1‘?8 genferahty. It
:§; SecwpgNSscse |SovgE o005 may be used for any variation in stiffness and mass (including eohcen-
W trated masses), any load distribution or time function, and any com-
ii?: R ~ bination of end conditions. The basic computation is the determination
-1 . 3 .
) . =& of deflected shape, which may be done by any convenient method. If .
1 '§ 2 TEe )
53 . . . .
Y = é % >é<?- 55; ?(? important, the effect of shear distortion, elastic supports, or any other
g 21 33 $49 < 2 special conditions of the particular problem could be included in the
3?_ s SER,.Tg 3 3pS.3g deflections, and hence in the dynamie analysis.
b ; HJSED S ;N e ER e
'g: _§ 58 g = g § S .%‘g § g = g E 2 * The bending moment based upon the firast mode eould be computed from the data
=5 RSN is N slgssd858) = in Table 4.2. The bending moment due to Fy; is the modal moment, and 380.85 is
-\3§ R '43 §§§§ 3% 48] B gggﬁ B34 4Y the moment at point 10, corresponding to a deflection of 112,760 X 10~° in. Since
-3 SEREREEFPRNEE R R E é Sl S moment is proportional to deflection, the maximum dynamic moment is easily com-
- E‘ puted for the actual deflection of 1.87p; X 1073in. The value given above, based on
"g 3 1 2ladyy Z A the static moment, is somewhat more accurate since the higher modes are approxi-
MO mately accounted for,
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FIGURE 4.9 Continuous beams—notation.

4.5 Continnous Beams

The dynamic analysis of continuous beams by any rigorous method is a
very cumbersome procedure. This is primarily due to the fact that the
characteristic shapes are rather complicated mathematically and not
convenient for manipulation. The difficulty is compounded because
there are usually several natural modes with frequencies that are not
radically different and all of which might contribute significantly to the
response. Although the presentation which follows is rigorous, the

engineer must in many practical cases resort to approximate solutions
for response such as discussed in Chap. 5.

a. General Frequency Equation

Consider the general case of a continuous beam as shown in Fig. 4.9,
where it is assumed that each span has uniform mass distribution and
stiffness. We begin by noting that Eq. (4.5) applies to spans with any
end conditions, and hence the characteristic shape for the nth mode
and the s span is defined by

Pne(T) = Qns 8IN @aeT + Bro COB Ane + €y, sinh Gnez + Do, cosh anz
r .
q)na(x) = Qps@n, COS Ayl — (Bnlana Bl @pe + eﬂ.ga“a cOBh [ 9P%

+ Do, sinh a2
13 Y . .
2., (x) = —Qual, sin 4,08 — Bn.a2, COs @,z + G2, sinh a,,z
+ Dg,al, cosh @,z

where & and $'/ are the first and second derivatives with respect to 2 and

o — 4{m.r.un2
ne EIJ
It is now convenient to introduce the following boundary conditions for
two adjacent spans (Fig. 4.9):

(@) ®.,(0) =0

(&) ®q.(l) = 0

(e} &, (1) = ®,,.1(0) (4.37)
{d) EI&, () = El,u®),,,0) = —om,,

(&) Puesn(0) = 0
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which state that, in the modal shape, the deflections at the supports are
zero and that the slopes and bending moments of two adjacent spans
at the common support must be equal. Substituting the expressions
for modal shape and derivatives thereof into (a) to (e), we obtain the
following:

(f) ®Bae + Dns =0

(@) @, 80 0ol + ®re co8 an,l, + @, sinh a,l, + D,, cosh a,,l, = 0
{(h) @Rar COB @usl, — By 81N Apels + €,y cosh a1,

. Gn
+ S),‘. sinh amnl; = '_a(:-'.—l) (au(s+1) + en(a+l))

ns

»

('l) — @&, sin ancla — By, cO8 a“sls + ens Si-nh a’nals
2 I.
+ ﬂ)n, cosh an,ls = %‘1—) T+l' [‘—(Bn(s-{-l) + :Dn(a+1)1
na A

n ®aat) + Dnery = 0
Adding and subtracting (¢) and (z) and substituting from (),

Duern) = — Baern
. GnPerny Lo
(k) €uo sinh anls — B cosh gl = — By ——5— *i‘r—
a’nn L3
. sy Lo
() Qe 80 @uels + By €08 Cnole = Buorn na—; }—'
na

from which
_ +(Bna COSh amla - (Bn,(s+1) (ar|2(8+l)/a'n82) (Iﬂ-i-l/IB)

(m) Cno sinh a,,l,
_ —®Bne €08 Gnils + Buiery{(8aern /5 (Lega/10)
(n) Gne = 8in Quels

Adding (im) and (n), we may write

anz(t 1) Ic+1
(0) Qs + €t = BuslGne — Bugorny az+ I, Hu
nE
where
(» Gra = coth @uud, — cOb Gnals

(@ H.,, = cosech a,.l, — cosec aul,

If all subseripts in Eq. (o) are raised by 1, and the resulting expression
for (@a@+1 + Caesny) i8 Bubstituted into the right side of (h),. and if (m)
and (n) along with ©,, = —®,, are substituted into the left side, Eq. (h)
may be written in the form

24, (s
(7") (Bmf{nr — Batn) (_a’%;-l)‘[_t} Gm + Ti:“l') Gn(l+1))

a'uz(a+2)I=+2 =0
® — T Hpeby =
+ Bugrn PR A
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From (d) we may write
—Ms = Bl 1{~Brgryy + D (u41) G ety

or ginee Dngrry = — Brgetay,

Mo
§ Bupry = 55— 3—
® me+D 2E1, 1180 oy

Finally, substituting (s) and its equivalents with the subscripts raised
and lowered by 1 into () and canceling common terms,

H la m“a [ Gn:ls Gn(a+1)l.+1 ]

M., ._' il L AU
- (aMll)Ia (annla)In (an(a+1) lEs-{-l)In+1

H n(;+1)ll+1 _

+ Mo ter 1 m =0 (438)
Equation (4.38) is the three-moment equation which may be used to obtain
the natural frequencies of normal modes. It is equivalent to the three-
moment equation used in static analysis and also that used in determin-
ing buckling loads. As in those cases, Eq. (4.38) is applied to each pair
of adjacent spans. If the end of the exterior span is hinged, the moment,
at that point is taken as zero. If the end is fixed, the equation is applied
in such a way that 9., is the moment at the fixed end, and in so doing
the [ of the fictitious span outside the exterior support is taken to be
infinite.

By the procedure outlined above, one equation is written for each
support moment and the result is a set of simultaneous equations. The
M’s are moments which occur during free vibration in that mode and
of course cannot be determined. However, in order for any vibration
to be possible, the determinant of the coefficients of the 9%’s must be
zero. Expanding this determinant leads to the frequency equation,
the roots of which are values of a,l, which are directly related to w,.
This procedure is illustrated by examples given below., Having obtained
the frequencies, the characteristic shapes are determined by substituting
each root in turn into boundary equations such ag Eqgs. (4.37f) to (4.375),
the number of equations required being one less than the number of
coefficients (@, ete.) to be computed.

b. Natural Frequencies for Special Cases

First we consider & two-span beam as shown in Fig. 4.10. Equation
(4.38) need only be written once, with 9,, taken to be the moment at
the interior Bupport a.nd S'rl,.(,_n = mﬂ(,+1) = 0. Thus

Gmla Gn(l+1)ll+l ]
—Mps | —— —_— T = 4.39
[(aml-)L t Grernb s ~ ° (4-39a)
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Natural modes of two identical spans:
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' e_El(2w)
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FigUurE 410 Normal modes of two-span beam.

and the frequency equation ig

Grids Grols —
(0“111)11 (anzlz)Iz

0 (4.39)

where G.1 = coth a,l; — cot anily
Grz = coth @pals — cot anals

_ 4 M1w,|2

An1 = —‘EII

The problem is now to determine values of a,l which satisfy this equation.
Note that a.l; and a.ol» have a constant relationship for given beam
properties, and hence one may be replaced by a constant times the
other. In general, such frequency equations are not easily solved and
a trial-and-error procedure must be employed. This process may be
accelerated by the use of published tables giving values of ¢ and H.»

To illugtrate by a specific result, let us take the case of two spans
tdentical in stiffness, length, and mass. The frequency equation now
becomes

Goi 4+ G =0
This equation has two sets of roots, the first corresponding to
Gu = Gua = £ >
and the second to Gax = Gz = 0. The roots are

Ontly = @uale = 1, 27, 3x, . . .
and aml = a4l = 3.97, 706, 10.2, . . .
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Netural modes of three identical spans:
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FIGURE 4.11 Normal modes of three-span beam.
The natural frequencies are therefore given by
Ela,* EI 205' 5% 5aat
wp? = m i (r%, 3.92,2x,7.06, ...) (4.40)

The characteristic shapes for the first four modes are shown in Fig. 4.10.
Note that the first set of roots (the odd modes) are for antisymmetrical
modes and are the same as the natural modes of a single simply supported
span.* The second set of roots are for symmetrical modes which cor-
respond to a single span fixed at one end and simply supported at the
other. This similarity to a single span is obviously correct, since in
an antisymmetrical mode there is a node at the center support and
hence one span does not affect the other. On the other hand, in a sym-
metrical mode there can be no rotation at the center support, and the
situation is the same as if that were a fixed support.

Second, consider a ihree-span beam such as in Fig. 4.11. Writing
Eq. (4.38) twice,

Garly Gasls Hysls
- M,, —n— mam
! [(aulll)Il + (anzlz)Iz] + Mz [(anzlz)fg] 0
anlz anlz Gnals
mn et - n —
! [(ﬂ‘mzlz)fz] Mnz [(ﬂmalz)fz + (ansls)fs] 0

Expanding the determinant of the coefficients of 9%, we obtain the fre-
quency equation

Gl Grsl, Gals Gl Hul: 1°
[(auzl)rﬁ (an,z,)zz][(a,,zg)rﬁ (a,,laa;I;] - [W] =0 (4D

* Note that Eq. (4.39a) is also gatisfied by M. = O, which indicates that these
modes must be the same as for two independent spans.
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Natural modes of four identical spons:
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FIGURE 4.12 Normal modes of four-span beam.

For three identical spans this becomes

4G.* — H.* =0
Qr 2Gn = iHn

where G, and H, apply to any of the spans. The three sets of roots
to this equation are (1} G. = H, = + o : the first root of the set is
@l = = and the complete set is the same as for the modes of a single,
simply supported span; (2) 2G, = — H..: the first root of the set which
is the second mode of the beam is a a;l = 3.55 and all modes of this set
have a node at the center of the middle span; and (3) 2G, = +H,: the
first root of this set, or the third mode of the beam, is asl = 4.30. These

- first three modes are shown in Fig. 4.11.

We could proceed in the same manner to investigate a four-span beam,
but of eourse the frequeney equation is much more complicated. How-:
ever, for ideniical spans it reduces to*!

V26, = tHa

Again, there are three sets of roots, the first of which is the same as that
for a simply supported, single span. The lowest three modes are shown
in Fig. 4.12.

It should be apparent from the above discussion that, for any number
of identical spans with hinges at exterior supports, the fundamental
mode is the same as for a single, simply supported span. The higher
modes of the single-span case are also higher modes of the multispan
case, but these are interspersed with other modes. There is another
group of symmetrical modes with only small rotations at interior sup-
ports which correspond roughly to a single fixed-ended span. In addi-
tion, there are various combinations of these two types, the number of
possible combingations inereasing with the number of spans.
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Several investigators have devised ingenious ways of obtaining natural
frequencies for continuous beams.?*2? Although these are useful, they
do not generally provide characteristic shapes, and it is an unfortunate
fact that the latter are required for complete dynamic analysis. It is
for this reason that one is usually forced to make approximate analyses.

¢. Example of Response Calculation

To illustrate a complete dynamic anslysis, let us consider a manageable
problem such as the determination of response for the two-span beam
shown in Fig. 4.13. Only the first two modes will be considered, since
for this type of loading (i.e., a concentrated load near one midspan)
higher modes would not make significant contributions to the response.
In Sec. 4.5b it was shown that these modes are identified by

Elxt
ﬂll = T w],z = P T
4
al = 3.02 w2 = 21(3.92)8
mid

It is also known by deduction that the characteristic shapes are given
by Eq. (4.8) (single, simply supported span) for the first mode and by
Eq. (4.14) (single, fixed-hinged span) for the second mode. However,
to illustrate the procedure that would be used for unequal spans, we shall
follow a more general approach.

The characteristic shapes may be derived from the boundary condi-
tions represented by Egs. (4.37q) to (4.37¢). Equations (a), (d), and
(e) provide

‘1’"1(0) =0 =8n + D
@;’1(0) = = —®Bu + D
Qnﬂ(o) =0= Bz + Doy

from which we obtain
®Bn1 = sDvﬂ =0 and Dps = —®p2

Making use of these relations between ® and © and noting that, for
identical spans, @.; = a., = a,, we may write

(@ ®.{) =0 @1 SiD @ul + @, sinh gl = 0

() P50 = B,(0) @n1 €08 @nl + €ny €0sh @ul = Ray + Coe

(&) @, = 8,(0) ~@n1 80 @l + €, 8inh gl = —2®,.  (4.42)
(@) @) =0 @nz Sin a,l + Bna(cos anl — cosh a,l)

+ @, sinh @l = 0
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FIGURE 4.13 Example. Response of two-span beam.

For any value of a,l, these four equations may be solved simultaneously
to obtain four of the unknown coefficients in terms of the fifth. This
will define the characteristic shape.

For the first mode we substitute a.l = = and obtain, from Eqgs. (4.42),

Cn = Bye =Ca=0
G = — @2

Letting @1, = A, the arbitrary modal amplitude, and substituting into
the general expression for ®..(z), we obtain the characteristic shape

$u(z) = Assinax = A sinw—;:

Bua(z) = — A, sin’r—f (4.43)
or o1.(x) = sin EZE dulz) = — sin"_l“’

These are, as expected, the same shape as that for the first mode of a

single, simply supported span.

For the second mode we substitute a.l = 3.92 and solve the four
equations (4.42) simultaneously. This produces the result

Coe = —25.30Cy; Rz = +35.60Cy
CBzz = —25.19621 :Dzz = +25.19(‘321
@22 = +25.32€4

where @ has arbitrarily been taken as the reference coefficient, The
second-mode characteristic shapes for the two spans are therefore

3. . 3.92
$uu(z) = n (35.60 sin 2922 4 gioh 3 ‘“)
92
Ba(z) = € (25.32 sin 2922 _ 9519 cos 2927
3.92
~ 25.30 sinh 2% 25,19 cosh > ”)
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Since it is known that this mode is symmetrical, the first of these may
be used for the second span if for that span the direction of z is reversed
and the origin taken at the right support. Furthermore, it is a con-
venience to refer @ to the midspan deflection. If this is done,

Pa{z) = A, (0.975 gin 3'323 + 0.0274 sinh 3-3245)

¢u(zr) = Q)%(::) {4.44)

where A: is the modal displacement at either midspan.

The modal equations of motion may now be obtained by the direct
application of Eq. (4.23), with the load integral replaced by one term,
gince we are dealing with a single concentrated load.

Ao+ ard, = TOFlu/2)] ”
7] m 2 j: b2 (.'E) dc ( )

The summation in the right-side denominator indicates that the integra-
tion must include both spans. For the first mode, using Eq. (4.43),

[ ()] -

me: $i2(z) dz = 2mLtsin*T—fdx = mi

In the last computation the sum for the two spans is twice the value of
the integral for one span since the shapes differ only in sign. Thus the
equation of motion for the first mode is

Ar + w2, = ‘f"g# (4.46)

and the modal static deflection by Eq. (4.24) is

Fi

o 12ml

Alll =

(4.47)

for the second mode, and using Eq. (4.44),

Fyldai]emyss = F1(0.975 gin 1.96 + 0.0274 sinh 1.96) = F,

2
m ) [ e do = om [ (0-975 sin 2922 4 0.0274 sinh 3-*;2“’) dz
= 0.95 ml
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In the last computation the symmetry of the mode has been recognized
and advantage has been taken of the fact that the value of the integral
must be the same for both spans.

The equation of motion for the second mode is therefore
s F 1 .
Ay + wg?dy = F%%i (4.48)
and the modal static deflection is

Fy

A!a; = (_0.951?1,0@)22 (4.49)

Combining the two modes and using Eq. (4.25), we finally obtain the
total midspan dynamic deflection.

y(t)

A lu(DLF) 1 + A ZAi(DLF)z

R F,
" witml (DLF), + w22(0.95ml) (DLEF).

_ [(DLF)1 (DLF)g]

mi wyi 0.95w,?

(4.50)

where the DLFs depend on the load-time function f(¢) and are evaluated
in the usual way as for a one-degree system. Equation (4.50) gives
the deflection at the center of the left span since the A’s were taken as
the characteristic amplitude at that point. The dynamic deflection at
the center of the right span would be

y(t) =

F,[ _ (DLF), n (DLF).
ml ot 0.95w5?

It may be noted that, in this case, the contributions of the modes are
roughly (neglecting possible differences in DLF) in proportion to 1/w?.
Therefore the second-mode contribution is (x/3.92)4, or 0.41 of the first.
It may also be observed that, if a symmetric (downward) load had also
been applied to the right span, the first mode would have contributed
nothing and the second-mode displacement would have been twice
that indicated above.

4.6 Beam-girder Systems

The analysis of floor systems or other structures consisting of combina-
tions of beams or girders is obviously rather involved. Not only is
each element a complex system, as we have seen in previous sections,
but the interaction of elements creates the possibility of many significant



184 Introduction to Structural Dynamics

F(t)
Fl8)=F sin ¢ J ! ‘I:Fm
my, Efb I l
- - 7%7 m;.fg %
L e lp | 2lp | L Yelg N Yely N
r 1 f -
}"'—-—Ib '—‘—-Xg
&
¥g0 r Yo Vo0
LI - S TNy

FIGURE 4.14 Beam-girder systersn—notation.

modal shapes. What follows is approximate in that only the most
important of these shapes are included. The procedure is sufficiently
accurate, however, for structures of the type discussed, namely, those
which are essentially symmetrical with respect to both structural prop-
erties and loading,

We shall consider the simple system shown in Fig. 4.14, which consists
of one floor beam supported by two identieal girders. All elements are
considered to be simply supported, and the dynamic load is applied at
midspan of the beam. For this analysis it will be assumed that there
is only one possible deflected shape for each member and that this is the
same as the fundamental mode of a simply supported, independently
acting beam. By this assumption the system has three degrees of
freedom. However, since the structure and loading are both symmetri-
cal, one of these will not be excited and need not be considered in the
analysis. The deflections of the two girders will always be identical.
The assumed shapes are given by

(a) Yo = Yo SiD '—ff
v 4.51)

® Yo = Yoo + Yoo SN %—"

where ys, and y,, are the midspan ordinates. Since the two latter ordi-
nates are unrelated, they completely define the two-degree dynamic
model.
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The equations of motion may be derived by use of the Lagrangian
equation (3.36). The total kinetic energy is given by

K= }/mbf (yb., sin A + y,.,) des + 2 X }/m,,f (y,,., gin Z) dz,

2
= l4my (ﬂbo L 2Aisefoo

L)+ magh, @52)

The strain energy may be obtained by the following:

EIb 13 dyb [ dyg)
w==2 [ (d%,)dwzx [(

After substitution of the second derivatives of Eqgs. (4.51), this becomes

2 2
QU = E‘{bfo( yh;;zsm lb)d:n,+EIf ( y,a';zsm )da;,

. Lysm
_E liz{b:,r 4+ E s (4.53)

The general expression for external work by the load at midspan of the
beam is )
We = F(£) Y + g0 (4.54)

Into Lagrange’s equation

0 o

d ok, ou _ aw.
dt \ 04;

we substitute the necessary derivatives, first taking ¢; = y,. and then
G = Ybo, to obtain

) EI
maly (g Hoo 4+ gan) + myln'yao + —l;‘ﬂ; Ygo = F(t)
* 5 P (4.55)
mblb %gh + - ﬂqo + b':' e = F(t)
T 20
These are the equations of motion for the two-degree system.
For convenience, we now assign the following numerical values:
my = my, = 0.1 Ib-sec?/in.?
EIL, = EI, = 2 X 10Y Ib-in.?
L = l; = 200 in.
Substituting these values into Eqs. (4.55) and rearranging,
0.6365 + 20, -+ 12,180y, = 0.05F(f) (4.56)

0.500s, + 0.6367,0 -+ 6090y, = 0.05F (2)
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To determine the natural frequencies, we substitute y = a.(sin w.t),
¥ = —@nw.? 8in w,d, and F(I) = 0, to obtain

(~0.636wn%) Gbon + (—2w,? + 12,180)g4en = 0

(—0.500w.2 + 6090)abon + (—0.636ws)apen = 0 (4.57)

Setting the determinant of the coefficients equal to zero, expanding the
determinant, and solving the resulting equation leads to

w? = 4810 we® = 25,890

Substituting these into either one of Eqs. (4.57) gives the characteristic
shapes
s = +0.835a,,:

Dpor = —2.400,n2

Thus, in the first mode, all beams vibrate in phase, while in the second,
they are 180° out of phase, the beam distortion being considerably
greater. It must be remembered that ay,. is the beam amplitude relative
to the girder, and thus the total deflection is the algebraic sum of asen
and agn,.

To obtain the modal equations, we first rewrite the energy expressions
in modal terms. We shall arbitrarily take the girder deflection y,, as
the modal amplitude. Therefore, for the first mode, we substitute
Yoo = Ay and g = 0.8354, into Eqs. (4.52) to (4.54) and insert numeri-
cal values for the parameters to obtain

® = 34.104,2
U = 164,0004 2
W, = 1.8354,F(t)

For the second mode we substitute y,, = A, and 3, = —2.404,. Thus

X = 18,224,
U = 472,0004 ;2
W, = —1.404,F(1)

We now write the Lagrangian equation for each mode separately to
obtain the modal equations of motion:

A) + 48104,

0.0269F (1)
Ay + 25,8904,

—0.0384F (2)

It

(4.58)

Denoting the applied load by F(t) = Fi[f(t)] and referring back to
Eqs. (4.23) and (4.24) (the equation of motion in genera] form), we see
that the modal static deflections are merely the right sides of Eqs. (4.58),
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with the time function removed and divided by «,®. Therefore
0.0269F,

= 0edl -8
Ay = 4810 +5.58 X 10-%F,

_ —0.0384F, _ _ i
Ags_l, = ‘—“5,890 = 1.48 x 10 F]_-

Furthermore, since 4 is the modal value of y,, the dynamiec deflections
are given by

Yoolt) = Ae(DLF), + A,.(DLF),

= +5.58 X 10-3F;(DLF), — 1.48 X 10—¢F,(DLF),
ya‘,(t) = 0835A1¢t(DLF)1 + (—2.40)A2.g(DLF)2

= +4.65 X 10-¢Fy(DLF), + 3.55 X 10-¢F1(DLF),

(4.59)

Returning now to the actual pulsating foree, let us say that F; = 50001b
and @ = 45 rad/sec. If we are interested in the steady-state response,
assuming that the free part has been removed by damping, the maximum

DLF is given by Eq. (2.36):

1

(DLF)nmax = 1= o

which, fer the first and sécond modes, is +1.72 and +1.08, respectively.
Insertion of these values into (4.59) gives the maximum deflections to
be expected.

(yao)mu = +0040 in, (yb.,)m..x = +0059 in.

These are the amplitudes of harmonic motion, which, because the free
vibration has been removed by damping, has the same irequency as
the applied force. The positive signs indicate that the motion is in
phase with that force. A negative sign would indicate a motion 180°
out of phase. The total amplitude at the beam midspan is the sum, or
+40.099 in.

The bending moments in the members are of course directly related
to the midspan deflections, in accordance with the assumed shapes.
Using Eqs. (4.51), we find

¢ Ox,? - 12 Tﬂ'
EI,ymr’ s Wb

W T,

The procedure given above could be extended to include systems with
more than one floor beam. If the loading distribution were _n(?t 8ym-
metrical, it would be necessary to treat the two girders individually.

M, = —EI 2y, _ EI.,y,ovr’ sin L,

and My =
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Furthermore, the analysis could be refined by including additional sine
terms in the assumed shapes [Eq. (4.51)]. All this could be accomplished
without changing the basic procedure. However, each such modifica-
tion increases the number of degrees of freedom, and hence the difficulty
of solution.

4.7 Plates or Slabhs Suhjected to Normal Loads

In this section we shall investigate the dynamic behavior of rectangular
plates or slabs. This is a three-dimensional problem and obviously
somewhat more complex than analysis of the two-dimensional elements
previously considered. Although the analysis which follows is for a
homogeneous and isotropic material, it is commonly used for reinforced
concrete siabs.

Consider the slab shown in Fig. 4.15, which is rectangular (a X b)
in plan, uniform in thickness 4 and mass m, simply supported on all
edges, and subjected to a uniformly distributed dynamic load p(t).
The deflected shape may be taken as

E SA sm'rm i b {4.60)

where A; is the modal ordinate at the center of the plate. Equation
(4.60) obviously satisfies the boundary conditions y = 0, 8%/0xz? = 0,
and 9%/dz* = 0 at all four edges. Each possible combination of integer
values of j and 7 defines a modal shape. In the following, only the firat
mode will be considered, that is, j = ¢ = 1, but the method of extension

- : |

- .

\
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s@’”“-—i\:\:—-"

e N e
y

riguRE 4.15 Bimply supported rectangular slab.
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to higher modes will be apparent. Thus we shall deal with the shape

xr xZ

= A, sin = sin — 5 (4.61)

and use the Lagrahgian equation

dfaxy, u _ oW,
6A1 6A1 6‘A1

.to obtain the modal equation of motion.

Since the kinetic energy of any element is given by
= Lomy? dx dz

where m is the mass per unit area, the total kinetic energy obtained by
integrating over the slab area is

a H . . 2
X = l4m f: [o (A1 sm%t sm%z) dz dz
= L4mA %ab

Therefore %(g:) = LimabA, (4.62)

The total strain energy by conventional plate theory is*

Eh? oy %y 62'y %
T 241 — v’)f f [( ) (622) +2 rerr

20— ») (aazaz):’] dz dz

n
1l

modulus of elasticity
plate thickness

= Poisson’s ratio for the homogeneous material
Operating on Eq. {4.61), we obtain

where E
h

Py 7t Tk . w2
Fye i —-Algzsm asmb
Py wt . FL . W2
Foe i —AlE-,sm—-smb
%y e ™% cos T2
drdz +Alab el Y

Substituting these expressions and integrating as indicated above, we
find that the strain energy is given by

Ehaﬂ' ab _1-_ l 2 4.63
U= 550 = 60 — 5 4 2(m2+b2) (4.63)
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The external work by a uniformly distributed load is
We=p@ [* [ 4160 sin T dr de
4ab

Finally, substitution of Eq. (4.62) and the derivatives of Eqs. (4.63) and
(4.64) into the Lagrange equation yields the modal equation of motion
- EhPetab (1 1\? 4ab
%mabA1+m(— +B§) A= ’P(t)(?)

a!
. Ehégt 1 1\2 16

From the last, it is apparent that the natural frequency of the first mode
is given by

ER? A1 1
W = 7t [.__.___12(1 — ”2)m] pr —+ ﬁ) (4.66)

If the general expression for deflected shape [Eq. (4.60)] had been used
throughout the above development, it would have been found that the
natural frequencies of all modes were given by

R,
P [m] (% + b‘z) (4.67)

The higher modes are obtained by taking various integer combinations of
j and 7. The correspondence between these integers and the modes in
the order of increasing frequency depends upon the ratio of ¢ to b. In
the case of a square slab, taking 7 or ¢ equal to 2 and the other equal to
1 provides two modes having the same frequency but different shapes.
Formulation of the analysis for other than simply supported plates,

while not impossible, is rather cumbersome. Approximate methods are
discussed in Chap. 5.

a. Example

It is desired to determine the maximum dynamic bending stress 111 a
flat, simply supported, rectangular steel plate having the following
dimensions and parameters:

¢ = 60 in,

b = 40 in.

E = 30 X 10° psi

v = 0.25

k= 1in. (m = 0.00073 lb-sec?/in.%)
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FIGURE 4.16 Flat-plate example—pressure-

time function. £, sec 0.05

The plate is subjected to a uniformly distributed blast pressure, with the

time variation shown in Fig. 4.16. Substitution of the numerical values
into Eq. (4.65) provides

Ay + 290,0004, = 2,220p(1) (4.68)
Therefore w1 = /290,000 = 539 rad/sec
T, = ZT:—- = 0.0117 sec

Proceeding as in Sec. 4.3 and noting that p() = 40f(f), we recognize that
the modal static deflection is the right side of Eq. (4.68), with the time
function removed and divided by w2

2220 X 40

Ave = 290,000

= 0.306 in.
The maximum DLF for the load function specified is given by Fig. 2.7.
Entering this figure with t4/T, = 0.05/0.0117 = 4.3, we read
(DLF)msx = 1.88
The maximum dynamie defleetion at the center of the plate is therefore
Ymex = (A)mex = A1(DLF)mex = 0.306 X 1.88 = 0.575 in.
The bending stress in the z direction may be computed by

Eh 3ty oy
= T — »z)(a_z2 + ””a’x‘z)
From Eq. (4.61),
%y x . 1L . A2
P —All—);sm o Sin —
oy ., wx . w2
i —AlEzsm—a sin —

Therefore
Ehx? 1 Y\ . xx . w2
o = (A1) 57 55 (B? + a?) i ¥
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The maximum bending stress occurring at the center of the plate
{x = a/2, z = b/2) is therefore

Ehxt (1 v
(a'z)max = (Al)mu: 2(_1 . yz) (’b‘", + Eg)
Substituting (41)max = 0.575 in. and the other parameters as given, we
find the maximum bending stress in the z direction to be 63,000 psi.
The maximum dynamic stress in the z direction obtained by inter-
changing ¢ and b is 39,500 psi.

An alternative method for computing the dynamic stresses would be
that based on the classical solution for static loads. In the above
example, the dynamic stress would equal the static stress due to a pres-
sure of 40 psi multiplied by the DLF, or 1.88. A slight difference would
be found between this result and that given above. Neither would be
exact sinee, in the original analysis, we neglected the higher modes and,
in the alternative approach, we assumed in effect that all modes have the
same DLF as the first mode. In this example the first mode dominates
both dynamic and static responses; therefore there is little error in either
method.

4.8 Elasto-plastic Analysis of Beams

The determination of inelastic response for beams or other elements

having distributed mass and load is extremely difficult. One possible -

approach is to conduct the usual elastic analysis up to the time when the
ultimate bending capacity is attained at some point along the beam and
then to assume that an idealized hinge has formed at this point, thus
creating a new elastic system. The analysis would then be continued
until a second hinge is formed or the rotation of the first hinge reverses in
direction, thus indicating that elastic behavior should be restored at this
point. This type of analysis is extremely cumbersome, because the
system may change several times during the response and is still not exact
since the plastic behavior is really not concentrated at a point as assumed.

An alternative approach is to replace the member by a lumped-
parameter system as indicated in Fig. 4.17h. The mass and load are
both considered to be concentrated at discrete points along the span, and
it is assumed that plastic hinges may form only at these points. For the
elastic range the stiffness coefficients would be determined in the usual
manner by introducing unit deflections at each point. When a plastic
hinge forrus at a particular point, a new set of stiffness coefficients may be
computed for the beam, with a pin inserted at that point. Although
more practical than the first method mentioned, this approach is also
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FIGURE 4.17 Finite-difference formulation of elasto-plastic
beam analysis.

very cumbersome, because of the large number of potential hinge
arrangements.

A simplification of the lumped-parameter approach is possible if use is
made of finite-difference techniques. Consider a simple beam (Fig. 4.17)
with uniform load p(f), uniformly distributed mass m per unit length,
and constant rigidity EI. The beam is divided into equal segments, so
that the lumped parameters are

M = m (Ax) F(t) = (Ax) p(f)
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The curvature at point r may be approximately expressed in terms of the
second ceniral difference as follows:

dy 8y, 1
(d“) = B T (aay W T 2 )

where y, is the deflection at point r. The bending moment at this point

is therefore
d?y
— &l (z.r)

—BI
i W Wrrr — 20 + ¥oo) (4.69)

In,

If we now consider the equilibrium of & segment of beam (assumed to be
massless) as shown in Fig, 4.17¢, the shear in that segment is obviously
given by

My — Myy

Vr-ﬁl,r = Ax

Next consider the dynamic equilibrium of mass r as indicated in Fig.
4.17d. The equation of motion for this mass is

Mry"r + Vr—]..r - Vr,r+1 + Cy" = F"'("‘)
or Mg - T Z BT gy = ) (4.70)

where ¢ is the damping coefficient and it is assumed that the damping
force is proportional to the velocity at this point. At any time and for a
given distortion of the system, Eq. (4.69) provides the bending moments
at all points and Eq. (4.70) permits computation of the accelerations at
these points, Thus numerical analysis may be executed in the usual
manner for lumped-mass multidegree systems (Sec. 3.9).

When one of the moments reaches the ultimate bending capacity e,
the moment is held constant at that value in subsequent computations.
However, it is necessary to continue evaluation of Eq. (4.69) until a peak
is reached and the hypothetical 9, begins to decrease. This reversal
indicates that the point has returned to elastic behavior, and sub-
sequently the moment could be computed by

EI
My = Mp — @) Werr — 20 + yo—1) — M,P (4.71)

where 9.7 is the hypothetical peak previously computed. BEquation
(4.71) is based on the idealized moment-curvature relationship shown in
Fig. 4.17e.

It should be apparent that the equations given above can easily be
modified so as to be applicable to beams with nonuniform distributions
of mass, rigidity, and loading.2

Structureg with Distributed Mass and Load 195

In order to obtain acceptable accuracy by the method just outlined, &
fairly large number of mass points must be used. The number depends
upon the type of loading, but in a typical case it might be necessary to
divide & simple beam span into 10 segments. Thus the lumped system
would have nine degrees of freedom, and the time interyal for the numeri-
cal analysis would have to be taken as a fraction of the smallest natural
period of the elastic system. It is apparent that this type of analysis is
not feasible for hand ecomputation. However, it is ideally suited to
electronic computation, and systems consisting of many lumped masses
can be handled with relative ease.

If the loading on the beam is such that the hinge locations are known
in advance and only one or two hinge arrangements occur, the procedure
given above is unnecessarily complex. The much simpler procedures
presented in Chap. 5 are quite adequate for such cases.

Problems

In Probs. 4.1 to 4.6 the beam is prismatic and has the following properties:

m = 30 Ib-sect/ft per foot of span

EI = 1.5 X 108 lb-fi?

1 =121t

4.1 Determine the maximum dynamic values (in terms of 1) of midspan deflection,
midspan bending moment, and end shear for the beam of Fig. 4.184 due to a suddenly
applied constant pressure of magnitude p, lb/ft.
Answer

y = 282X 10~ p, ft

M = 29.1]): 1b-ft

V = 7.63nlb
p(:)sin-’{—'
{a)
i |
plt)
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L &2 | Y g
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FIGURE 4.18 Problems 4.1 to 4.4,
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4.2 a. Write the geries (in terms of p, and DLF) for the dynamic midspan bending
moment in the beam of Fig. 4.18b.

b, For the first two modes only, determine the maximum modal components of the
midspan bending moment and end shear for the load-time function of Fig. 4.19.
(Note: Figure 2.9 may be used.)

Angwer
oM, = 12.3p, Ib-it
911; = 0
Vl = 3.211)1 lb
Vg 1.251!1 lb

plth, ib/s
o
I
|

FIGURE 4.19 Problems 4.2 and 4.4. Load-
t, sec time function.

4.3 Assuming that the static-deflection curve is the same as the first-mode shape and
including only that mode, compute the maximum dynamic bending moment in the
beam of Fig. 4.18¢ due to the load-time function of Fig. 4.20. (Note: Figure 2.7 may
be used.)

Answer
17.8F, ft-1b

n

Flel b

0 o1 FIGURE 4.20 Problem 4.3. Load-time
t, sec function.

4.4 a. Write the series expression (in terms of F, and DLF) for the deflection at each
of the two load poeints on the beam of Fig. 4.184.

b. For each of the first two modes, compute separately the maximum dynamic
deflection at each load point due to the load-time function of Fig. 4.19, with p, replaced
by Fy b,

Answer
At right load: y, = 5.6 X 10-7F,
yr = 3.5 X 10°°F, ft
At left load: y, = 4.6 X 107 F,
fr = 6.8 X 10* Fy ft

¢. Repeat (b) for the left beam reaction.
Answer

Vl = 1.56F1

V, = 0.15F, Ib
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4.5 A simply supported beam is subjected to a uniformly distributed static load 0]
which is suddenly released. Write the series expression for the resulting free vibra-
tions, and determine the amplitude of the first mode in terms of p,.

4.6 A concenirated force given by F, sin 400t 1b is applied to the quarter point of the
simply supported span. If there is 10 percent of critical damping, what is the ampli-
tude (in terms of F.) of steady-state defiection at the loaded quarter-point in each
of the first two modes?
Answer

A = 2.0 X 10-¢F, ft

A = 25 X 103%F, ft

4.7 Using the Rayleigh method, derive an approximate expression for the funda-
mental natural frequency in terms of E, I, and m for the haunched beam in Fig. 4.21.
Both ET and m vary linearly between midspan and support. Divide the beam into
10 equal segments.
3E5L,2m £Lm
I

m

L. 2 iz

i
L
i
I
FIGURE 4.21 Problem 4.7. Haunched beam. f J‘r

|
—.

4.8 Determine the fundamental natural frequency of a two-span continuous beam
interms of EI, [, and m. The exterior supporte are hinged, and the beam is prismatic
over both spans, but one span is twice as long as the other.

4.9 Derive the frequency equation for a continuous beam of two identical spans with
complete fixity at the exterior supports. By comparison with results given for single
spans, write expressions for the natural frequencies of the first five modes.
4.10 Consider the two-span beam shown in Fig. 4.13. Suppose that, in addition to
the concentrated force F1[f(#)], there is a uniformly distributed force of p[f(f)] on the
right span and that f(t) is the same for both forces. Derive expressions similar to
Eq. (4.50} for the two midspan deflections.
4.11 a. Write the equations of motion for the three-beam system of Fig. 4.22, assum-
ing the following shapes: y, = yo[l — eos {xz,/2l,)] and ys = ¥, + %o 8ID (wzs/L).
Yoo i8 the deflection at the end of the cantilever girder, and s, is the midspan beam
deflection relative to the end of the girder.

b. Determine the natural frequencies of the two modes for the following parameters:

iy = 2m, = 0.1 lb-gec?/in.?
EI, = V4EI, = 101 lb-in.?
b, = 21, = 200 in.
¢. Write the modal equations of motion.

oit) plt) .
. JREEREEE!
4
4 | my, £1p
4 mg, £,

-y
‘——-—-—19-
Iy

FIGURE 4.22 Problem 4.11. Beam-girder system.
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4.12 A reinforced concrete slab simply supperted on all edges is subjected to a pres-
sure uniformly distributed over the central region indicated by the shaded ares in
Tig. 4.23. The pressure has the time function shown. Considering only the first
mode, determine the maximum dynamic deflection at the middle of the slab. The
thickness of the slab is 6 in., and the rigidity may be taken as

Eh? = 7 Ib-in.? inch i
m = 3 X} 107 Ib-in.? per inch of width

Answer
Ymaz = 0.476 i!l.

45" 90" 45"

’ pit}

[u) 0.1 0.2 fsec

I's

FIGURE 4.23 Problem 4.12. Two-way slah.

4.13  Consider the simply supported beam with uniformly distributed dynamic load
as shown in Fig. 4.24. An elastic analysis is to be made, using the finite-difference
technique, with three lumped masses as indicated.

a. Write the twe equations of motion (the third is eliminated by symmetry) in
terms of ¥, and ..

b. Using these equations, derive expressions for the natural frequencies and com-
pare with the exact expressions for the first and third modes of the real beam.

olt)
NN NYE

R R ™
#n N 3] 3

bre n FIGURE 4.24 Problem 4.13. Finite-difference
ta Ha ta a analysis.

5
Approximate Design Methods

5.1 Introduction

We must conclude from the developments in previous chapters that exact
or rigorous dynamic analysis is possible only for relatively simple struc-
tures. This is particularly true of structures with continuous-mass dis-
tribution, the analysis of which is extremely complex for all but the most
simple boundary conditions. We have also seen that rigorous solution is
possible only when the load-time and the resistance-displacement varia-
tions are convenient mathematical functions. For these reasons it is
often prudent, at least for practical design purposes, to adopt approxi-
mate methods which permit rapid analysis of even complex structures
with reasonable accuracy. These methods usually require that both the
structure and the loading be idealized in some degree. This ehapter
deals with methods by which the idealization may be accomplished.

It is frequently possible to reduce the system to one degree of freedom.
For example, all three of the structural elements shown in Fig. 5.1 can,
for practical purposes, be represented by an equivalent one-degree
system having the parameters F., m,, and k.. Even though such elements

' are parts of a complete structure, it is often permissible to treat them

independently.
One method of simplifying an analysis in the elastic range is to include
only one or a few of the normal modes. For example, it was seen in the

previous chapter that satisfactory solutions for simply supported, single-
199
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FIGURE 5.1 Equivalent one-degree systema.

span beams could be obtained by considering only the fundamental mode.
This procedure is, in effect, an idealization of the actual dynamic system.
However, for many structural elements this approach cannot be used,
because it is too difficult to determine the modal shapes. Therefore even
the fundamental mode must be approximated.

The approximate procedures developed herein are not based on the
fundamental mode, even though the shape of that mode may be known,
The methods presented are somewhat more accurate and are more general
since the characteristic shape is not required.

Nonlinear resistance or nonmathematical load-time functions can be
dealt with by numerical analysis. However, this is tedious and often
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not’ justified because of other uncertainties in the formulation of the
problem which cannot be removed. This chapter deals primarily with
direct, or closed, solutions based on approximate mathematical models.

Of particular importance is the difficulty in handling plastie behavior of
structural elements, Rigorous solutions for such cases are not practical
for design purposes. This difficulty is illustrated by the beam of Fig.
5.2, which goes through three stages of deformation. The first stage is
purely elastic; the second, occurring after hinges have been formed at the
supports, is a combination of elastic and plastic; and the third might be
classified as purely plastic. FEach stage has different characteristic
shapes, and it is not possible to identify modal shapes which are meaning-
ful throughout the response, The approximation used herein is to treat
each stage as completely independent; e.g., the incremental distortions
in the second stage of Fig. 5.2 are assumed to have the characteristic
shapes of a simply supported beam,

From the viewpoint of practical design, the approximate methods pre-
sented here are extremely important. They should not be regarded as
merely erude approximations, to be used for rough or preliminary analysis,
nor should they be regarded as methods to be used only by engineers who
lack the training or intellect to employ more sophisticated techniques.
Problems in structural dynamics typiecally involve significant uncertain-

ties, particularly with regard to loading characteristics. Such being the

case, complex methods of analysis are often not justified. It is a waste
of time to employ methods having precision much greater than that of the
input of the analysis.
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5.2 Idealized System

In order to define an equivalent one-degree system, it is necessary to
evaluate the parameters of that system, namely, M,, k., and F,, as shown
in Fig. 5.1. In addition, the load-time function f(t) must be established
in order to analyze the system. These parameters and loading are dis-
cussed below. With this representation of the actual structure and
loading, the dynamic analysis becomes relatively simple by use of the
methods for one-degree systems presented in Chaps. 1 and 2.

The equivalent system is usually selected so that the deflection of the
concentrated mass is the same as that for some significant point on the
structure, e.g., the midspan of a beam. It should be noted that stresses
and forces in the idealized system are not directly equivalent to the same
quantities in the structure. However, knowing the deflection, the stresses
in the real structure may be readily computed. Since the time scale is
not altered, the response of the equivalent system, defined in terms of
displacement and time, is exaetly the same as that of the significant point
on the structure.

The constants of the equivalent system are evaluated on the basis of an
assumed shape of the actual structure. This shape will be taken to be
the same as that resulting from the static application of the dynamic
loads. This concept is not quite the same as that using the first~-mode
shape, and for the types of elements considered here is somewhat more
accurate, particularly with regard to stress computation. Furthermore,
we are here dealing primarily with cases in which the modal shapes can-
not be easily determined or, if determined, are expressible only by
unmanageable mathematical funetions.

It is convenient to introduce below certain transformation faclors.
These factors, denoted by K, are used to convert the real system into the
equivalent system. When the total load, mass, resistance, and stiffness
of the real structure are multiplied by the corresponding transformation
factors, we obtain those parameters for the equivalent one-degree system.

a. Mass

As developed in Sec. 3.7a, the equivalent mass of a mode or, in the
present case, of the equivalent one-degree system, is given by

7
M. = Y M. (5.1a)

Tl

for a lumped-mass system or

M, = fme*(z) dx (5.18)
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for a structure with continuous mass. In Eqs. (5.1), ¢, or é(z) is the
assumed-shape function on which the equivalent system is based. For
convenience, we now introduce the mass faclor K, which is defined as
the ratio of equivalent mass to the actual total mass of the structure.

M, )

K =3 (5.2)

For example, in the case of the beam shown in Fig. 5.1, M, = mL, where
L is the span, and M, is as given by Eq. (5.15).

b. Load Distribution

As shown in Sec. 3.7a, the equivalent force on the idealized system is
given by

J
F, = El Fody (5.30)

~ for a structure with concentrated forces or

F. = [*p@e(@) da (5.30)

for distributed loads. The load factor K is defined as the ratio of
equivalent to actual total force.

F,
K, = 7, (5.4)
For the beam of Fig. 5.1, F, = pL and F, is given by Eq. (5.30). The
above applies to magnitude of force, and both equivalent and real loads
have the same time function.

c. Resistance Function

The resistance functions for actual struetures may have a variety of
forms: Three possible shapes are shown in Fig. 5.3¢. Curve A corre-
sponds to a structure of brittle material. Curve B would apply to a
structure made of a ductile material with marked yielding such as steel
or reinforced conerete. Curve C represents a situation in which resist-
ance decreases above a certain deflection but before complete failure.
The latter might occur in a structure of plain conerete or one in which
failure results from instability. In order to simplify analysis, these
resistance functions must be idealized. For most structures it is per-
missible to employ a bilinear function as indicated in Fig. 5.3b. The
analyses discussed herein will be made on this basis.

The resistance of an element is the internal force tending to restore the
element to its unloaded static position. For our present purpose we
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define resistance in terms of the load distribution for which the analysis
is being made. Thus the maximum resistance is the total load having the
given distribution which the element could support statically. The
stiffness is numerically equal to the total load of the same distribution
which would cause a unit deflection at the point where the deflection is
equal to that of the equivalent system. By these definitions it is apparent
that the resistance factor Kr must always equal the load factor K.
Therefore

Rm!
Kp = E. K; (5.5q)
and Ky = f =Ky : (5.5b)

where K is given by Eq. (5.4), together with Eq. (5.3). Referring to the
beam of Fig. 5.1 and to Fig. 5.3b, we see that R,, is the maximum value of
pL, or the plastic-limit load which the beam could support statically,
and k is the value of pL which would cause a unit elastic deflection at
midspan. Resistance and deflection are related in the elastic range by
R = ky for the real structure and B, = k.y for the equivalent system.

For the fixed-ended beam of Fig. 5.1, as well as in other cases, the
resistance funection is not bilinear even if ideal hinge formation is assumed.
This is true because hinges first form at the supports and further deflec-
tion is required to form the midspan hinge and hence attain maximum
resistance (Fig. 5.2). The result is the resistance function indicated by
the solid line in Fig. 5.4. Bince we require, for simplified analysis, a
bilinear function, this solid line will be replaced by the dashed line shown
in Fig. 5.4. The “effective” spring constant kz will be selected so that
the areas under the two curves are equal. Thus the energy absorbed will
remain constant, and there will be little error in the maximum dynamic
displacement computed. This concept is applied to an example in
Sec. 5.6¢.
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d. Load-time Function

Any reasonable load-time function can be handled by numerical
analysis. However, if a closed solution is desired, it is usually necessary
to idealize the actual function by some simple mathematical shape. This
can often be done without appreciable error in the final result. Further-
more, the actual function is usually not so well known that precision in
its representation is justified.

Examples of this type of idealization are shown in Fig. 5.5. In each
case the aetual funetion (solid line) has been redueed to one of those for
which solutions were given in Chap. 2 (Figs. 2.7 to 2.9 and 2.23 to 2.26).
Thus the maximum response can be determined very easily by use of the
charts provided.

The selection of the idealized load-time function requires judgment by
the analyst. It is important to note that the actual and idealized func-
tions need be similar only in the time range of interest. For example, in
Fig. 5.5d, for the determination of maximum response, function A might
be used if iy were the time of maximum response; but B might be used if
that time were t,. It is for this purpose that the times of maximum
response given in Figs. 2.7 to 2.9 and 2.23 to 2.26 are particularly useful.

5.3 Transformation Factors

In this section transformation factors are tabulated for beams and'slabs
having various types of support conditions. These tables contain all
information necessary to convert actual structural elements of these
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types into equivalent one-degree systems for the purpose of approximate
analysis. 910

d. Beams and One-way Slabs

Table 5.1 is applicable to beams or one-way slabs having simple
(hinged) supports. Factors are given for three different load distribu-
tions. As previously explained, these are based on the static deflected
shape corresponding to the particular load distribution. These shapes
are indicated in Fig. 5.6 and expressed by the following:

Uniform load:

iy
#la) = 3"1% (L*z — 2La* + ) elastic

@) =2 z

A
BOf i

plastic

Concentrated load at midspan:

$(z) = %3 (8L* — 4x?) < g elastic
% L .
#(x) = I T <y plastic
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Concentrated loads at third points:
_ 36z 2 _ oo L .
olx) = 5574 (2L 3z?) z <z elastic
36 P 2 L .
o(x) = 5373 (3Lx 3z —9-) g <% < 4L clastic
3z L ' .
d(z) = 5A z <y plastic
$lx) =1 ;—J <z < 3L plastic

The magnitude of these functions is set by the requirement that
#(L/2) =1

Note that, in the plastic range, ¢(z) is not the actual shape, but rather
the shape of the incremental deflection after the fully plastic state has
been attained. Use of this function implies a sudden change in the
characteristics of the dynamic system. Although, clearly, this is not
correct, the error resulting from this approximation is tolerable, and is in
fact necessary if we are to obtain a practical solution.

According to Eqgs. (5.1) and (5.2), the mass factors in Table 5.1 have
been computed by evaluating

[L me?(x) dz

KM = mL

where m is the mass per unit length, and the integration includes the
entire span, using the appropriate expressions for ¢(z) in each portion of
the span. Also given in the table are factors for concentrated masses at



208 Introduction to Structural Dynamics

the load points which frequently occur in practice.
Y Mo,

S,

where ¢, is the ordinate of the assumed shape at mass r. To obtain the
equivalent mass corresponding to these concentrations, K y is multiplied
by the sum of all concentrated masses. If both concentrated and dis-
tributed masses are being considered, the total equivalent value is simply

the sum of those corresponding to the two types of masses.

The load factors in Table 5.1 have been computed by Egs. (5.3) and
(5.4). Thus

These are given by

Ky =

[ ¥ po(a) da

L=
pL
for the distributed load and

zr: F.¢,

YF.
for concentrated loads.

Also given in Table 5.1 is the load-mass factor, which is merely the ratio
of the mass and load factors. This is a eonvenience since the equation of
motion may be written in terms of that factor alone. Furthermore, the
natural frequency of both the real and idealized systems is given by

w=\/1aj= K.k _\/ k
Mg KMMz— KLMMt

The maximum resistances and spring constants tabulated are for the
real system and are merely the conventional expressions for these quanti-
ties. When multiplied by the load factor, these become the correspond-
ing quantities of the equivalent system. The term Mz is the ultimate,
or plastie, bending strength of the element. The resistances given are
based upon flexure, and it is assumed herein that the element is designed
so that shear failure is not critical.

The dynamic reactions given in Table 5.1 are discussed in Sec. 5.4.

Tables 5.2 and 5.3 contain transformation factors for fixed-ended
beams and for beams with one end fixed and the other simply supported.
These were derived in exactly the same manner as were those for simply
supported beams, the only difference being in the assumed shapes. In
these cases three ranges of behavior must be considered since the system
changes but does not become fuily plastic when the hinge is formed at the
support. By the assumptions of the procedure being presented, the
middle range, which we shall call elastic-plastie, is associated with the

Ky =

Simply-supported

Table 5.1 Transformation Factors for Beamns and One-way Slabs
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same shape as that of an elastic, simply supported beam, and therefore
the factors are identical. Furthermore, in the plastic range, the shape is
independent of the original support condition and therefore all beams
have the same factors.

The maximum resistances given in Tables 5.2 and 5.3 are those which
occur at the upper limit of each range. In addition to the spring con-
stants associated with each range, the “effective’” spring constant encom-
passing all ranges is also given. This concept was discussed in connection
with Fig. 5.4.

b. Two-way and Flat Slabs

Transformation factors, as well as the constants defining the resistance
function, are given in Tables 5.4 and 5.5, for two-way slabs with simple
and fixed supports, respectively. These were obtained in the same
manner as were those for beams. Values are given for several ratios of
the lengths of the two sides.

After the deflected shapes for a slab have been assumed, the transforma-
tion factors are obtained by integration over the slab surface. The
factors given were based upon approximations to the classical plate
theory for deflection in the elastic range and yield-line theory in the plastic
range. In the latter range the shape was assumed to be planar between
yield lines. In the simply supported case there is obviously an elastic-
plastie, or transition, range, but the behavior is exceedingly complex,
and in order to simplify the procedure this range has been ignored. In
the case of fixed supports, the elastie range has been terminated when the
moment along most of the long edge has reached ultimate. This transi-
tion point cannot be determined precisely, and the limiting resistances
given are estimates. For the elastic-plastic range, it has been assumed
that the shape (but not the resistance), and hence the factors, are the
same as those for a simply supported slab.

In Tables 5.4 and 5.5, the moment notation is aa follows:

IMps. = total positive ultimate moment capacity along midspan sec-
tion parallel to short edge

Mp.. = total negative ultimate moment capacity along short edge

IR}, = negative ultimate moment capacity per unit width at cencer of
long edge

In the expressions for spring constant, I, is the moment of inertia per unit
width., Note that both maximum resistance and spring constant refer
to the fotal load on the slab.

Transformation factors and resistance functions for square, interior
flat slabs are given in Table 5.6. Various sizes of column capital are
considered. These factors were based on approximate deflected shapes,

—

Simple
support

Table 5.4 Transformation Factors for Two-way Slabs: Simple Supports—Four Sides, Uniform Load

V4 = total dynamic reaction along short edge; ¥z = total dynamic reaction along long edge.
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= ESx R RS - A R AR R unit width in middle strip of width a/2
] ] .y . - .
8 3 :%“‘M ceceecs | esescs loeeess i NMpepy, Mpen = positive and negative ultimate moment capacity per
g % 3 unit width in e¢olumn strip of width a/2
Row ] fha SRRKRS | 235535 | 528888 |~
& 2 5§ scoocco |cccccs |esssss |8 The data given for slabs in Tables 5.4 to 5.6 are obviously approximate,
s 8 B4 % .
8 '2 H 4 The transformation factors are based on assumed shapes, and the ulti-
* - 3 - - .
3 3 3 3 R3RRIY | 95InBl|8anRcd |3 mate resistance on yield-line theory. More refined data could probably
(=} ] 2 . . T . .
5 ¢ = eeeeee eeeses oeeees | be developed, but in view of the many uncertainties in the dynamic
= K- o = ) . .
8§ 7 - comnon |caunos |canmen | & analysis of slabs, it is doubtful that this would be warranted for design
3] E o mooooe |mooooo oo ee g purposes.
o A
u — H
.2 _ g 53 .2 § ¢. Frames
o g 2 2 2 ! . . ) . . .
s ! g2 E L [ 3 3 Consider now the simple rigid frame shown in Fig. 5.7. The mass is
N & =l & |

distributed along both the roof and the sides, and the dynamic load
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FIGURE 5.7 Equivalent one-degree system for rigid frame,

consists of a concentrated force at roof level plus a distributed load on
one wall surface. Only horizontal motion is considered. We wish to
define the equivalent one-degree system. The displacement of this
system y is taken to be that at the top of the frame.

It will be assumed that the walls remain straight; that is, y. = zy/h,
where y. is the displacement of a point at a distance x from the base, and
y 1s that at the top of the frame. Although the columns of the frame and
probably the walls of the building do not in fact remain straight, this is
an acceptable approximation.

For the assumption stated above, the equivalent mass is given by

(Eq. (5.1)]
k 2
M, = ml + 2 f m (E) dz
= ml + 24mqh (5.6)
where m, and m, are the masses per unit length (along the frame) of the

roof and walls, respectively.
The equivalent load is [Eq. (5.3)]

R = FO + [ "0 (;) dz
- FO + 0} (5.7)

Since we have taken the deflection of the equivalent system to be the same
as that at roof level, the equivalent stiffness k., is equal to the actual
stiffness of the frame referred to a horizontal load at the top. This
stiffness may be computed by conventional frame analysis and is merely
the concentrated force required to produce a unit horizontal deflection of
the roof.

The maximum resistance of both the real and idealized systems is
simply the maximum horizontal force which can be carried by the frame.
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If the columnns have less bending strength than the girder (the usual case),

Rm = Rmc = 45:‘)‘

where 9Mp, is the ultimate column bending strength.

On the basis of the foregoing, the equivalent system is established and
then analyzed in the usual manner. The analysis yields the frame
deflection, and stresses within the frame are directly related to this
quantity, If a closed solution is to be made, both F(f) and p(f) must
have the same time variation. Otherwise numerical analysis is necessary.

For multistory frames with mass and load distributed over the walls,
it is in most cases sufficiently accurate to lump the mass and load at floor
levels on the basis of tributary wall area.

d. Other Structural Elements

Transformation and resistance factors such as those discussed above

~ could be derived for a wide assortment of structural elements. The only

requirements are assumed shapes in the possible strain ranges and the
maximum resistance for each range, Following the principles developed
above, the general procedure should be apparent.

In some cases shear distortion may be important, and should be con-
sidered when determining the deflected shape, spring constant, and maxi-
mum resistance. For example, the shear effect may be significant in
deep beams of reinforced concrete.

Trusses may be handled in the same manner as beams either by express-
ing the properties in terms of equivalent beam parameters or by comput-
ing the deflected shape on the basis of truss analysis. Because of insta-
bility of individual compression members, it may not be possible to
design for plastic behavior of trusses.

Analysis of continuous, reinforced concrete T beams or continuous,
composite steel beams involves special problems because the effective
rigidity ET varies along the span and depends upon the magnitude and
gsign of the bending moment. However, approximations can obviously
be developed. Analysis of beams supporting two-way slabs presents
similar problems, since both the load intensity and the mass vary along
the span because of the nature of the slab behavior.'

5.4 Dynamic Reactions

It is important to recognize that the dynamic reactions of the real struc-
tural element have no direct counterpart in the equivalent one-degree
system. In other words, the reaction of the equivalent system, ie., the
gpring force, is not the same as the real reaction. This is true because the
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FIGURE 5.8 Determinsation of dynamic reactions.

simplified system was deliberately selected so as to have the same dynamic
deflection as the real element, rather than the same force or stress charac-
teristics. We are of course very much interested in the reactions, since
these are usually related to the maximum shear in the element and also
because they are necessary for the design of the supporting structure.
Expressions for the real reactions may be obtained by considering the
dynamic equilibrium of the complete element. For example, consider
the elastic, simply supported beam with uniformly distributed load and
mass 8 shown in Fig. 5.8. For dynamic equilibrium we must include the
inertia force, which at all times has a distribution identical with the
assumed deflected shape of the beam. This distribution exists because
the shape is constant and at any point along the span

i) = Aelz)

where A is a constant. Thus, at any point, the intensity of the inertia
force is proportional to the ordinate of the deflected shape. It is apparent
(Fig. 5.8). that the dynamic reaction V{(t) depends upon both the load
F(¢) and the total inertia force I(2).

Consider now the dynamic equilibrium of the left half of the beam as
indicated in Fig. 5.86. By symmetry, it is known that the shear S a?.t
midspan must be zero. Furthermore, the location of the resultant inertia

force (for the half-span) may be computed from the assumed shape, which
for this case is

8a) = gov (Liz — 2La* + 2
Thus Fig. 5.8b represents a set of forces in equilibrium. Itis c(')n-venient
to take moments about the resultant inertia force, thus obtaining the

following equation:

V(3 {ga)L — M. — YF(8Mg2L — }5L) =0

Approximate Design Methods 219

where 9. is the dynamic bending moment at midspan.

s : Consistent with
our definition of resistance, we have

_RL
8

where R is the resistance which varies with time. Substituting for 9. in

the equilibrium equation and solving for V', we obtain

P

V = 0.39R + 0.11F (5.8)

Thus the ciynamic reaction is a funetion of load and resistance, both of

whi(_:h are functions of time. Since this equation must also hold for
static loading, and since in that case B = F, the sum of the two coeffi-

cients must equal 14. Note that all terms in Eq. (5.8) are for the real,
rather than the equivalent, system.

For the plastic range or for beams with other loading or support condi-
tions, the same procedure as above is followed, the only difference being
in the assumed deflected shape. On this basis the expressions given for
dynamic reaction in Tables 5.1 to 5.3 were obtained. Edge reactions for

two-way slabs and dynamic eolumn loads for flat slabs are given in Tables
5.4 to0 5.6.

5.5 Response Calculations

Having established the equivalent one-degree system by the procedures
outlined above and with the aid of the factors given in the tables pre-
sented, we may write the equation of motion

Mg+ ky = F.(O (5.9)
or in terms of the real system,
KuMyg + Kiky = KiF(t) (5.10)

where M, is the total mass of the beam, slab, or other element. Equation
(5.10) may also be written as

KiuMag + ky = F(B) {5.11)

indicating that it is possible to use only one factor, K, modifyin_g one
parameter of the real system, rather than three. The natural period of

the system is given by
= 2r \/‘3%1'@ (5.12)

Since the transformation factors change as the elem_ent progresses
through the different stress ranges, i.e., elastic, elastic-plastic, and
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plastic, a complete solution requires that each range be treated separately.
For example, if a closed solution were being obtained, the response in
each range would be computed, using the factors for that range and
beginning with initial conditions equal to the final conditions in the
preceding range. However, such refinements are probably not justified
in the majority of practical cases. It is therefore suggested that, when
the response is expected to extend beyond the elastic range, an approxi-
mate weighted average of the various factors be employed. This approxi-
mation would permit the use of charts for maximum response such as
those given in Chap. 2. Tf a numerical analysis is being made, no diffi-
culty exists since the factors may simply be changed at the appropriate
time.

a. Combined Load-time Functions

As discussed in See. 5.2d, it is often possible to idealize the real load-
time function by a simple relationship, thus making possible the use of
available charts for maximum response. For example, in Fig. 5.5¢, the
real function is replaced by a triangular load pulse. If this is deemed to
be excessively crude, it may be desirable to replace the load function by
the superposition of two (or more) triangles as shown in Fig. 5.9. An
approximate solution for this case, based upon the response due to each
triangle separately, has been developed by Newmark.?®* This method is
expressed by the empirical relationship

(Fih

Tm‘ Cl(.ﬂ) + (F1)2

“K Ca(u) = 1 (513)
where C1{u) and Ca(u) are values of the ratio R../F, corresponding to a
certain value of the ductility ratio u and the ratios of duration to period
tey/ T and t42/ T, respectively. C'1(u) and Cs(x) may be taken directly from
Fig. 2.24, the inelastic response curve for triangular pulses of this type.
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This procedure is restricted to systeins undergoing plastic response and
cannot be extended to other types of load-time functions.

Equation (5.13) provides an upper bound of response; i.e., it over-
estimates the maximum deflection or.the required strength for a desired
defleetion. The maximum error in required strength which cceurs when
one load duration is very short and the other very long is of the order of
20 percent. Any number of triangles may be combined in this way by
adding terras to the left side of the equation.

Equation {5.13) must be solved by trial and error. For analysis, ie.,
when the natural period and maximum resistance are given, values of u
must be assumed, C:(x) and Cy(u) read from Fig. 2.24, and the process
repeated until a p value satisfying Eq. (5.13) is found. For design, in
which case the required u is given, a natural peried is assumed, so that
C1(u) and ('3(u) may be obtained and the required R, is then computed.
However, selection of the structural properties for this B, will result in a
new natural period, and hence the process must be repeated until ., and
T are consistent,

To illustrate application of the above to analysis, consider a given
gystem and loading for which

(i) fa1 _
Rm - 112 T -_— 0-5
(Fi)o _ tas _
R, = 0.8 T = 1.0

We desire the maximum deflection in terms of the ductility ratio . The
trial-and-error procedure is demonstrated in the following table, where
C1{u) and Cy(n) are read from Fig. 2.24 for each assumed p.

‘ F F

Assumed Cilw) Calw) (F1)1 Ol (F1)2 Calw) z
» Rm Rm
7 (.37 0.59 0.44 0.47 0.91
6 (.39 0.63 0.47 0.50 0.97
5 0.43 .67 (.52 0.54 1.06

Since, for the correct solution, the summation would be unity, p is
between 5 and 6; ie., the maximum deflection i1s between five and six
times the elastic-limit deflection. This should not be regarded as an
accurate solution, since deflections in the plastic range are always difficult
to compute and the approximation in the method may lead to sizable
error. From the more important design viewpoint, however, the eorre-
sponding error in required strength is not great.
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FIGURE 5.10 Long-duration loading and bilinear resistance.

b. Limiting Cases of Inelastic Response

For competence in design, one must have an intuitive feeling for the
dynamic response of structural elements. To aid in the development of
this intuition, it may be useful to consider two limiting cases of inelastic
response: (1) the maximum deflection of a system subjected to a long-
duration loading relative to the natural perlod and (2) the deflection due
to a load of very short duration.

The first case is indicated in Fig. 5.10, where the force F, changes so
slowly that the variation up to the time of maximum response, ¥, is
negligible. Such being the case, the work done by the force, and hence
the total energy imparted to the system, is

Wa = Flym

If the resistance function is bilinear as indicated in Fig. 5.10, the strain
energy at maximum deflection, or the total energy absorbed by the system,
is

U = Rulym — Loya)

The latter expression is merely the area under the resistance curve. Since
the work done by the force must equal the energy absorbed at maximum
deflection (§ = 0), we may write

Frym = Bu(ym — Yya)
Introducing the ductility ratio, u

Ym/Yet, a0d rearranging,

Required Ry, = F, (ﬁ@) (5.14)

1

or TS S

(5.15)
Equation (5.15) may be used for the analysis of & given system, and
(5.14) for the design of an element given the required ductility ratio.
The equations are of course valid only if response extends beyond the
elastic limit.

Approximate Design Methods 223
Fiz) R
A
Am b— - T
| |
| |
| |
- { |
| I
k 1 | —
tg t Yol Ym y

FIGURE 5.11 Short-duration loading and bilinear resistance.

Equation (5.14} indicates that, if ¢ is permitted to be very large, R,
may be made equal to F;. However for purely elastic response (u = 1),
R, must be twice F,. Thus, by allowing large plastic deformation, the
designer may reduce the strength of the structure by almost one—half
It should be noted that, in this limiting case of long load duration, the
natural period is not a factor in the design.

The other extreme case, that involving a short-duration load, is shown
in Fig. 5.11. In this situation it is convenient to consider the loading to
be a pure impulse (i.e., the load duration is small compared with the time
of maximum response; see Sec. 2.3a), denoted by

1 = impulse = F\f;

This impulse gives the mass of the system an initial velocity § = i/M ,
and the resulting kinetic energy is
.?"2
* = om
At maximum deflection this energy is completely absorbed by the spring
(since the kinetic energy is zero), and hence we may write
,£2

R,
U = Ballm — YWoya) = T (v — 15)

Noting that w? = k/M, we rearrange to obtain
Required R,, = 72%% (5.16)
1 (R i 1) (5.17)

or Iri

In this case we may observe that, if u = 1 (elastic response), £, must
equal 4w, but as u becomes very large, the required strength approaches
zero. The potential design economy associated with large permitted
deflection is apparent. Equations (5.16) and (5.17) may be used with-
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out appreciable error if the natural period is five or more times the load
duration. In such cases, the actual shape of the load pulse is of no
importance, because the load effect is expressed entirely by impulse, or
the area under the load-time eurve.

Equations (5.14) and (5.16) are useful for design purposes because,
even for load durations which are not extremely long or short, one or the
other of these equations provides a good basis for preliminary design.
This statement does not apply if the load begins near zero and increases
slowly to its peak value.

5.6 Design Examples

This section contains several very simple examples of the dynamic design
of beams and slabs, based on the approximate methods deseribed above.
In each case the dynamic load is given as a simple linear time function,
with the implication that these may be idealized forms of the actual time
variation.

Tt must be recognized that dynamic design can seldom be direct since
the response depends upon mass and stiffness, which are both related to
strength. Therefore we must apply the technique of trial and error.

In most of these examples the design criterion is given in terms of the
duetility ratio u. This is often done in practice because in some respects u
is a better indication of structural damage than is the actual deflection.
A proper x value for design depends upon the function of the element and
the amount of damage that can be tolerated. It also depends upon how
many times the design load is expected to occur. If the purpose of design
is merely to prevent collapse under one load application, u values as high
as 20 may be permissible. On the other hand, if there are to be many
load applications or if no damage can be tolerated, the element must
remain elastic; that is, u = 1. A commonly used criterion for moderate
damage is ¢ = 3, which implies considerable yielding of steel or eracking
of concrete but no significant impairment of the resistance to future
loading.

. Reinforced Concrete Beam

Consider the problem of designing a simply supported, reinforced
concrete beam as shown in Fig. 5.12. It is subjected to a uniformly dis-
tributed load, having the magnitude and time function shown. In addi-
tion to the weight of the beam itself, there is an attached dead weight
(perhaps a slab) of 1200 Ib/ft. We are required to design a beam which
will remain elastic; i.e., the response will attain, but not exceed, the elastic
limit.
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FIGURE 5.12 Design example. Reinforced concrete beam.

The material properties are specified as follows:

Dynamic yield strength of steel = 50,000 psi = Tay
Dynamic concrete compressive strength = 4000 psi = 47,
Bteel ratio = p, = 0.015

With regard to the material strengths, it should be noted that these are
time-sensitive; i.e., the strength increases with rate of strain.?® Although
the amount of inerease varies, for the type of elements and loading eon-
sidered herein, the dynamic strengths are approximately 25 per cent
greater than static values. The steel ratio is specified for this example to
simplify the problem by reducing the number of variables.

The ultimate bending strength of the beam will be taken as that given
by the well-known formula

.
Mp = p,bd%q, (1 — 17:;)

where b and d are the width and effective depth, respectively. For the
material properties given, this may be written

Mp = 666bd? in.-1b
The maximum resistance of the beam (Table 5.1) is

_ 89y _ 8 X 666bd?

Bm L~ 156x12

= 29.6bd* b

By previous experience it is known that the natural period of such ele-
ments is usually of the order of 0.05 sec. Therefore it may be expected
that ¢/ T will be about 3, since f; = 0.15 sec. Reference to Fig. 2.7 leads
us to estimate that the maximum DLF will be approximately 1.8. The
estimated required strength of the beam is therefore

Required B, = 1.8 X 20,000 X 15 + 2,000(+) X 15
= 570,000 1b
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where 2000 1b/ft is the dead weight, including an estimate for the beam
itself. The dead load must be added, because this part of the resistance
is not available to oppose the dynamic load. Since

. 570,000 .
2 - El = 3
Required bd? = 30.6 19,300 in,

the trial beam size will be taken as b = 18 in. and d = 32.8in. We now
proceed fo analyze this particular beam.

In order to determine the stiffness of a reinforced concrete beam, an
estimate must be made of the effective moment of inertia. This is diffi-
cult to accomplish because the amount of cracking, which has a very
appreciable effect, varies along the span and depends upon the amount of
deflection due to loading, as well as other phenomena such as shrinkage,
creep, etc. Some designers have used the fully eracked transformed
section for computing moment of inertia. It has also been suggested
that, as an approximation, the average of the uncracked and ecracked
transformed sections be used.? The latter appears reasonable, and the
result can be closely approximated by the expression

I, = ? (5.5p. + 0.083)
which will be used below for the sake of simplicity. Therefore
I, = w (5.5 X 0.015 4 0.083) = 52,500 in.4
and, from Table 5.1,
_ 9B4ET  384(3 x 10%)52,500

= = = ¢ :
k= S5 12 2.08 X 10 Ih/in.

With an allowance for steel cover, the total weight of the beam selected
is 660 1b/ft and the total weight and mass of the system are

Weight = (660 + 1200)15 = 28,000 Ib
M, = 28,000/386 = 72.3 Ib-sec?/in.

From Table 5.1, Ky = 0.78, and hence the natural period is

B Kb, [078 X 72.3 _
T—-ZTJ A = 27 m—0033 sec

Approximate Design Methods 227

The required resistance is obtained with the aid of Fig. 2.7.

ta _ 015
' T~ 0033 P
Therefore (DLF)}ax = 1.89

and

Required R, = 1.89 X 20,000 X 15 + 28,000
= 567,000 + 28,000 = 595,000 lb

The actual strength is 570,000 lb, and therefore the beam is slightly
underdesigned. If desired, a second cycle of design would be executed in
exactly the same manner as demonstrated above.

In order to determine the maximum shear, we compute the dynamic
reaction, using the expression given in Table 5.1. However, the load at
the time of maximum response must first be determined. From Fig.
2.7b we obtain £,/ T = 0.487, or t,, = 0.016sec. At thistime the dynamic
load is 17.9 kips/ft (Fig. 5.12) and the dynamic reaction, or maximum
beam shear, is

V = 0.39R,, (live) + 0.11F + dead
= 0.39 X 567,000 + 0.11 X 17,900 X 15 + 14 X 28,000
= 264,000 1b

The web reinforcement of the beam (stirrups) would be designed for this
value.

As an example of elasto-plastic design, consider the same problem as
above, except that now the design criterion is to be ¢ = 3; that is, the
desired maximum deflection is three times the elastic limit.

Since the load duration in this example is relatively long, we use Eq.
(5.14) to obtain a first trial value of required resistance. Thus

Required R, = F, (—1——) = 20,000 X 15 X 1.2

1—-1/2u
= 360,000 Ib

This is, of course, an upper bound [since Eq. (5.14) is based on an infinite
duration], so we might arbitrarily reduce this value, say, to 300,000 lb.
If the beam weight is estimated to be 300 Ib/ft,

Required B.. = 300,000 4+ 1500 X 15 = 322,000 1b
and
Required bd? = 322,000/29.6 = 10,900 in.?
Let us try
b =15 in. and d = 27.01n.
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Therefore

Beam weight = 450 1b/ft
Total weight = (450 + 1200)15 = 25,000 Ib
M, = 25,000/386 = 64.0 Ib-sec?/in.

3 3
I = %5 6550, + 0.083) = 2E0° (5.5 ¢ 0,015 1 0.083)
= 24,400 in.4
_ 384EL, _ 384(3 X 109)24,400 _ .
k= 37 5015 X 12)° = 0.96 X 10% Ib/in,

By Table 5.1, the load-mass factors are 0.78 and 0.66 for the elastic and
plastic ranges, respectively. Since the behavior is to be more plastic
than elastic (x = 3), we estimate that the proper Kiy is 0.70. Thus

T = 9 \]"&%% ~ 2 \/M — 0.043 sec

0.96 x 10¢
ta 015 _
T = 0043 ~ %9
Ry (net) _ 300,000 1.0
F, 20,000 X 15 ~

Using the last two values computed, we obtain from Fig. 2.24 4 = 3.7,
This is somewhat more than desired, and the beam should be slightly
strengthened to obtain y = 3. However, inspeetion of Fig. 2.24 indicates
that an increase of less than 10 percent would be required, and this step
will not be included here.

In order to determine accurately the maximum beam shear, or end
reaction, a more complete analysis would be required. The maximum
shear occurs at the end of the elastic range (since at later times R is
constant and F decreases), but there is no convenient way to obtain the
corresponding time without making a rigorous analysis of the elastic
range. As a slightly conservative estimate, we mgay combine the maxi-
mum load with the maximum resistance, using the expression for dynamic
reaction given in Table 5.1. Thus

Viax = 0.39R,, (net) + 0.11F + dead

= 0.39 X 300,000 4 0.11 X 20,000 X 15 + 14 X 25,000
= 162,000 Ib

The error in this value is small, since the elastic limit is attained in some-
thing less than half the natural period, at which time there has been little
decrease in the applied load.
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FIGURE 5.13 Design example. Steel beam.

b. Steel Bean

The fixed-ended beam shown in Fig. 5.13 is to be designed using a
standard steel section. It is required that the bending stress in the beam
not exceed 30,000 psi. For simplicity, it will be assumed that the dead
load of 1 kip/ft includes an allowance for beam weight. It will also be
assumed that the beam is so braced that the possibility of buckling is
eliminated.

Inspection of the appropriate response chart, Fig. 2.9, indicates that
the DLF will probably not exceed 1.4, since ,/T will probably not be less
than about 24. Adopting this value of (DLF)mer and combining dead
and dynamic effects, we estimate the maximum moment at the support
to be

wDLZ

12
307
=1 X T3+ 20 X 396 + 50 X 394 X 1.4

=75+ 756 4 262 = 412 kip-ft
: . . _ T 412 X112 -
Required seetion modulus = — 30 165 in.
Most economical section, 24 WF76
I'= 2096 in.*
8 = 175.41n.?

. _ 192ET  192(30 X 10%)2096
Table 5.2: k= I = (30 % 12)3

= 258 kips/in.

Mupex = +

EoL 4 I (DL e

In order to establish the equivalent system, the concentrated and dis-
tributed roasses must be dealt with separately, using the factors given in
Table 5.2. A dead load must of course represent a mass which is part of
the systern. The computations leading to the actual stress intensity are
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as follows:
K =10 Ky=1.0 concentrated mass
Ku =037 distributed mass
M. = S Kyt = DXIOF L0 X 0BT _ 081 kip-gect/in.
k. = Kk = 258 X 1.0 = 258 kips/in.

T = or \/M = % \/@l = 0.111 sec

258
& 008
T~ o111~ 072
Fig. 2.9: (DLF)max = 1.35
sm.m=1>< +20><3%+50><3V><135
=403k1pft
M 403 X 12
maXa—§—T75-Z———276kSI

Thus a slightly smaller beam size could be used, but we shall not consider
further trials here.

To determine the maximum beam shear we first observe, in Fig. 2.95,
that {./¢ is always greater than unity, which indicates that, under any
circumstances, the maximum load, 50 kips, would be acting at the time
of maximum response. At this same time, that part of the beam resist-
ance associated with the dynamic load is 1.35 X 50 = 67.5 kips. There-
fore, using the expression for dynamic reaction in Table 5.2, the maximum
shear, or reaction, is found to be

Vimax = 0.71 X 67.5 — 0.21 X 50 + dead
=480 — 105+ 14 X 20 + 1 X 30 X 14 = 62.5 kips

c. Reinforced Concrete Slab

The two-way slab shown in Fig. 5.14 is fixed on all four edges and sub-
jected to a uniformly distributed pressure, having the triangular time
function indicated. The design is to be based on an allowable deflection
of 6 in. at the center of the slab. Although this is a very large deflection,
it would be an appropriate criterion if the aim of the design were merely
to prevent collapse under a rare loading condition. Deflection, rather
than ductility ratio, is specified, presumably because clearance or some
other functional consideration, rather than structural damage, controls
the design.

The design factors for this case are given in Table 5.5. In order to
simplify the procedure, we shall make use of the “effective’” resistance
function as indicated in Fig. 5.4. To simplify further, let us assume
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FIGURE 5.14 Design example. Two-way reinforced concrete slab.

that the total bending strength of the slab is the same along each edge
and also along the two midspan axes. Thus, by the notation of Sec.
5.3b and Table 5.5, '

mP}’a = m?aa = mbe = Mpp = bmg;,b

According to Table 5.5 for ¢/b = 12/15 = 0.8 and with the notation of
Fig. 5.4,

Rl B 26 43“;.&
R, = % (12(Mpra 4+ Mpea) + 10.3(Mpp + Mpw)]
= 1{5 [12(2) + 10.3(2)] 159m%,, = 55.8912,,

b = 705E],
1= 3
a
ky = 212?1.,
a
0 2
(Y1 = %‘ = 0.0375 mé}"a‘
) R, — R IS0z
{ya)2 = (yahr + ﬁ-ﬁk*;““l = 0.176 —E%‘

Referring to Fig. 5.4, if we equate the area under the trilinear resistance
curve up to (yu): to the area under the bilinear (dashed} curve up to the
same point, we obtain

(#e)z = 0.130 mé’;"“
R, _ 430EI,
and kg = (y,:)z pr

which define the “‘effective” bilinear resistance funetion.
Referring to Table 5.5, the load-mass factors for the three ranges of
behavior are found to be 0.69, 0.71, and 0.54. Since, in this case, the
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behavior is primarily plastic, we seleet a value near that for the plastic
range, say, Kru = 0.57.

As a first trial, let us investigate a slab with a resistance just equal to
the peak value of the applied load; i.e.,

R, =20psi X144 X 12 X 15 = 5.2 X 105 Ib
Therefore

. 0 Rm _ 52 X10° _ s
Required 9%, = 55 558 . 9300 1b-in./in,
where the dead weight has been neglected.

If the dynamic material strengths are o4, = 50,000 psi and o, = 4000
psi and if we arbitrarily set the steel ratio as p, = 0.01, the bending
strength per inch of slab width is

ML, = pbdoay (1 ~ 24 ) = 46442 1b-in. /in.
1.7Udc

The required effective depth of slab is therefore

. _ equired 9M3,, _ /9300 _ :
Required d = \/R itd = \ 761 4.5 in.

and the total depth might be 6 in. Using the empirical expression for
moment of inertia, and neglecting differences in the two directions,

3 By
Iy = Eg—- (5.5p, -~ 0.083) = (1)_(241)_ (5.5 X 0.01 + 0.083)
= 6.30 in.4/in.
we compute the parameters of the equivalent system.

kg = 430E1.  430(3 X 10%)6.30

_ _ 1b/in.
- e T 392,000 1b/in
6
M, = 10 X e X2 XI5 _ oy 3y cectin,
386
B KiwM, _ ., [057 X 350 _
T = 21|‘ kE' = 2 W = 0045 sed
tg 0.20
7T = 0.045 ~ 44

Entering Fig. 2.24 with this value of fs/T and with B./F: = 1, we read
p = 43. Since
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the maximum deflection at midslab is

Ymax = #(y-t)s =43 X 1.33 = 5.7 in.

This deflection is close to the value desired (6 in.), and the design is
therefore deemed satisfactory. -

5.7 Approximate Design of Multidegree Systems

Thus far in this chapter, we have dealt with the analysis and design of
single elements with distributed mass which could be analyzed on the
basis of an equivalent one-degree system. Of course, most structures
consist of combinations of such clements. However, in many cases it is
permissible to assume that the individual elements act independently of
the others. For example, if we consider a beam supported by girders, it
may be possible to analyze the former as though it were on rigid supports
and to design the girders for the dynamic reactions of the beam so deter-
mined. This is permissible provided that the natural periods of the ele-
ments are sufficiently different. If the girders have a much longer
period, they will respond slowly and the inertia forces along the beam
due to the girder motion will be small compared with those due to the
vibration of the beam itself, and hence will have little effect on beam
response. On the other hand, if the girder period is short compared
with that of the beam, the girder deflection will be small relative to beam
deflection, and again there will be little effect on beam response. As an
approximate rule of thumb, it may be said that two such elements may
be treated separately if the periods differ by a factor of 2 or more. An
example of this type of uncoupled system is given in Sce. 5.7a.

If the periods of the elements are not sufficiently different, it is neces-
sary to analyze the multidegree system as such. Generally, this can be
done by assuming a single shape for each element. Thus the number of
degrees of freedom equals the number of elements. This procedure was
demonstrated for a beam-girder system in Sec. 4.6 and is further demon-
strated in Sec. 5.7(b), using the methods of this chapter.

a. Rigid Frame with Vertical Load

Suppose it is required to determine the maximum dynamic stresses in
the frame of Fig. 5.15¢. The analysis of such a rigid frame involves con-
sideration of two separable effects of the applied load: (1) the flexural
stresses in the girder and columns, and (2) the axial stresses in the
columns. The periods of the natural modes associated with the first
effect are much larger than those associated with the second. Stated
differently, the vertical displacements due to change in column length
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are too small to affect the flexural response. Furthermore, the girder
responsc develops so slowly that the load on the column may be con-
sidered static. Therefore our procedure will be to analyze the flexural
response, ignoring the change in column length, and then to design the

. column for the maximum girder reaction applied statically.
g It will be sufficiently accurate to base the flexural analysis on an equiv-
-4 alent one-degree system. As in previous cases, the deflected shape asso-
g = } ciated with the predominant mode will be taken as that due to static
. P application of the load. In Fig. 5.15b are shown the moments due to
""""" 3 r this load obtained by conventional frame analysis. The deflections cor-
_ : : responding to these moments as obtained by the moment-area method or
tll'“’ -—:- : some other standard procedure are given by
B Fo I
= A2 d
Yo 48ET, (I* + 21z, — 4237 x < 5
— L PR
Yo = WEI\™ ~ %
for which the coordinates are defined in Fig. 5.15¢c. The midspan girder
deflection is given by
Fi3
o Ybo =
Qe ~ ; 96E T,
| ]
% If we select this deflection as the modal coordinate, the characteristic
’8 shape is defined as follows:
v . | : !
= & J (@) &u(zp) = (l + 2z — 4 be) z<;
S = {(5.18)
L : =] 2I [ zca
n - @ (b) ¢g($€¢) lg[ .’E - T
+ = N v
3% [ R &
% g — :E since, by definition,
L3 ]
T e 2 2 Yo = ynotr(m)  and g = yuso(z.)
: x L] = o .
'-:: - g% .§. 5 <« L= < % Referring to Eq. (5.1), we see that the equivalent mass of the system is
o 0 -
Y - /2 3
llq:!:. g M.=2 [ ma du(zs) |2 dxy + 2 [ me{pe(2e) | dz,
g o 5 i 0 o
< A ; where ms and m. are the mass per unit length of the girder and column,
X J_ < ‘: respectively. Executing the integrations, we obtain
- £ AL,
¥ = M, = 0.443myl +0076mh(mz) {5.19)
and substituting the numerical values given in Fig. 5.15a,
M.= 574 4 0.02 = 5.76 Ib-sec?/in.
224




236 Introduction to Structural Dynamics

It may be observed that the contribution of the column mass (0.02) is
very small and might well have been ignored. Furthermore, the mass
factor for the girder (0.443) lies between that for a simply supported
beam (0.49) and that for a fixed beam (0.37) as given by Tables 5.1 and 5.2.
The latter observation suggests that we might have estimated the mass
factor by approximate interpolation between these two extremes without
introducing appreciable error.

Since we have selected the deflection of the load point g, to be the
deflection of the equivalent system, the load factor K is unity. Thus

Ek=k = F _ 965D, _ 360,000 Ib/in.
) ybo ],'3
and Fl) = F(t) = Fy[f(©)]

The natural period of the system is

M, 5.76
= 2r \/ = 2z \/360 000 = (.0251 sec

For the given load-time funetion shown in Fig. 5.15¢, the maximum DLF
ig given by Fig. 2.8a.

t« 004

7= og2s) = 199 (DLF)nu = 123

The time of maximum response is given by Fig. 2.8b.

o= (.55 t. = 0.55 X 0.04 = 0.022 sec

The maximum dynamic girder deflection is therefore

(o) max = (Yoo)st(DLF) max = ’% (DLF) nox

Fy

= 360,000 < 123

Ii

(342 X 10-9F,  in.

and the maximum bending moment is

Fi X 200

8 x 1.23 = 41F, 1b-in.

Moy — % (DLF) e =

In order to obtain the maximum eolumn load, we must first derive the
expression for the dynamic girder reaction. Following the procedure of
Sec. 5.4, we consider the dynamic equilibrium of the half girder span as
indieated in Fig. 5.15d. The location of the resultant inertia force is the

I s

s b s e
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centroid of the area under the characteristic shape defined by Eq. (5.18a).
Taking moments about this point and noting that the girder end moment
is always one-half the midspan moment, we obtain the equation

VX 2340l + 5 X 13400 — 3gom = 0

R 18 by definition the static load of the type applied corresponding toa
given deformation or stress condition of the frame, and it follows that
M. = RI/6. Using this expression to eliminate 9, from the last equation
and sclving, we obtain

V = 0.76E — 0.26F (5.20)

which is also the dynamic column load. Comparison with the corre-
sponding expressions in Tables 5.1 and 5.2 indicates that the coefficients
in Eq. (5.20) lie between those for pinned and fixed-ended beams, as
would be expected.

In the present case, the maximum resistance occurs at £ = 0.022 see at
which time F = 0.9F, and E = 1.23F,. Thus the maximum column load ig

V = 0.76(1.23F,) — 0.26{0.9F,) = 0.70F,

As far as column axial stress is concerned, the load is applied very glowly
relative to the period of the mode corresponding to this stress. Therefore
the column may be designed as though the load just computed were
applied statically. The maximum column bending moment which oceurs

simultaneously is equal to (F{/12)1.23.

b. Elasto-plastic Beam-girder System

In this section the analysis of the beam-girder system and loading
shown in Fig. 5.16 is considered. It is known from preliminary considera-
tions that the girders and/or beam will deflect into the plastic range. The
maximum deflections of both beam and girders are desired.

In order to determine whether or not the beam and girders may be
treated as uncoupled, the natural periods of the separate elements should
be compared. Using the elastic factors in Table 5.1, we get for the beam

My, = KMy = 050(200 X 01) =10 lb-SeCZ/ill.
_ _ . 3B4EL, . 384 X 2 X 10v
koo = Kpphs = Koy TEh 0.64 5@

M. 10
Tb = 27 kbg = 27 ,Jm = 0.057 sec

— 123,000 Ib/in.

For one of the girders, the effective mass is that of the girder itself plus
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2(8) 2lt)
{ ML
| | e
57 my. £, Br )
L.l L lgs2 | | [ ]
~ T u nf =
mg = mp= 0.1 |b-sec?/in?
ly=1lp = 200in,
£ =ETp=2x10" [b-in? E
Mgy =M pp=1.6 x108 Ib=in, 3420 ———
s | /)
N |
|
i
[4) 1
0 0024 0052
£, sec

FIGURE 5.16 Example. Elasto-plastic analysis of beam-girder system.

one-half the beam mass (since this “rides” along with the girder) with a
mass factor of unity.

My = KyM, + 25M, = 0.49(200 X 0.1) + 14(200 X 0.1)
19.8 1b-sec?/in.
koo = Kigk, = KL,% = 1.0
&

120,000 1b/in.

T, = 2x \/ﬂ% = 2r 1-;% — 0.081 sec
The two periods differ by less than a factor of 2, and therefore we must
consider the dynamic interaction; i.e.,, we must analyze as a two-degree
system. The symmetry of structure and loading eliminates participation
of the third mode. :

In writing the equation of motion for the beam, we must include as
additional load the inertia forces due to the rigid-body acceleration asso-
ciated with the support motion as indicated in Fig. 5.17¢. Thus

KM;,Mbg"b -+ Kukbyb = KLb[p(t)lb - mblbga]

where ¥, and y, are the relative beam midspan deflection and the midspan
girder deflection, respectively. In this equation ksy, is the resistance Rs,

48(2 X 1019
(200)*

.

—
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FIGURE 5.17 Example. Force distributions.

which is limited by Rew = 8Mps/ly = 64,000 1b. With the load and mass
factors given for the elastic range in Table 5.1 (K, = 0.64, Ky = 0.50)

and the numerical properties given in Fig. 5.16, the equation of motion
becomes

10 + (123,000y, or 41,000) = 128p(t) — 12.84, (5.21)

The beam reaction, which is the dynamic load on the girder, is simply
one-half the total net force (including inertia effects) on the beam, as
indieated in Fig. 5.17b. This is given by

Ve = Blp(th — mulsif, — 0.64mulypn]
= 100p(t) — 10§, — 6.4 {5.22)

The factor 0.64 is derived from the condition that the distribution curve

of relative inertia force is the deflected shape. The equation of motion for
the girder is therefore (Fig. 5.17¢)

KoM jj; + Kicksye = K,V
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The girder resistance is k,y,, and when the girder is in the plastic range,
this term is replaced by the constant R, = 49Mp,/l, = 32,000 lb.
With the insertion of the elastic load and mass factors for a beam with
concentrated load at midspan (Table 5.1: K1, = 1.0, K, = 0.49) and
the numerical values of the girder properties (Fig. 5.16), the girder equa-
tion of motion becomes

9.89, + (120,000y, or 32,000) = 100p(t) — 10§, — 645 (5.23)

Equations (3.21) and (5.23) will form the basis for analysis, which must
be done by numerical integration, since we anticipate plastic behavior.
The student may wish to compare the elastic equations given above with
those derived for the same beam-girder system in Sec. 4.6. It will be
found that they are practically identical, there being only slight differ-
ences in the numerical coeflicients, which result from differences in the
assumed shapes. In Sec. 4.6 the assumed shapes were sine waves (i.e.,
the fundamental-mode shapes), while here they are the static-load-
deflection curves upon which Table 5.1 15 based.

Strietly speaking, Eqgs. (5.21) and (5.23} should be altered in the plastic
range by changing the load and mass factors to reflect the change in
deflected shape. However, if this were done, four conditions would have
to be considered: both elements elastic, both plastic, girder elastic/beam
plastic, and girder plastic/beam elastic. Thus four sets of equations
would have to be used. This greatly complicates the analysis, and the
increased accuracy is probably not enough to warrant the effort.

As the equations of motion now stand, each step in the analysis would
have to be done by trial, since both accelerations appear in each equation.
To avoid this, we may solve Egs. (5.21) and (5.23) simultaneously to
obtain two new equations, each involving only one scceleration. The
result is

(@) 4 = 10.8n(t) + (13,200y, or 3,530) — (21,000y, or 6,990)
® 4, = 1.56p@) + 6,790y, or 2,260) — (10,300y, or 2,760)

The aiternative constant terms within the parentheses are merely upper
limits of the resistance. For example, in Eq. (5.24a), 3,530 should be
used in place of 13,200y, if the latter exceeds the former. Rebound into
the elastic range is handled in the usual way {Sec. 1.5).

The natural periods of the two-degree system may be derived from the
elastic equations of motion. This was done in See. 4.6 with the result
Ty = 0.090 and T; = 0.039 sec. The time interval for the numerical
analysis is taken as approximately one-tenth of the shorter period, or
0.004 sec. The computations leading to maximum displacements are
shown in Table 5.7. Reference is made to Chap. 1 for the details of the
numerical procedure,

]

(5.24)

Yo
0.0251
0.1038
0.0163 | 0.1747

0.0005 | 0.2619
0.3496

0

.| 0.7396

~790 |-0.0127 | 0.6649

0.0019 | 0.0003
—1360 (—0.0172 | 0.7227

0.0046 | 0.0025

0.0090 | 0.0093
0.0189 | 0.0550

¥o (40)2
0.0003*

0.0141

0.0221
—0.0322 | 0.7633

—0.0021

—0.0035 | 0.4352
—310 |—0.0050 | 0.5173
—410 {—0.0066 | 0.5944

—0.0405 | 0.7717

¥e
Eq.
(5.24b)
0
120
290
560
880
1180
1380
1020
30
—130
—220
—2010
—2530

10,300y,
2760
0
30
100
260
570
1070
1800
2700
2760
2760
2760
2760
2760
2760
2760

2760

679075
or
2260
10
100
330
700
1200
1790
2260
2260
2260
2260
23260
2260
1970
1400

750

230

1.56p (L)
110
220
330
440
550
660
560
470
370
280
160

90
0
0
0
0

Y
0.2636
.| 0.2801

0.0019*] 0
0.0115 | 0.0019
0.0195 | 0.0153
0.0220 | 0.0482
0.0190 | 0.1031
0.0127 | 0.1770
0.0059

—0.0046 | 0.4358

—0.0139 | 0.5109
0.0453 | 0.3116

i (a2)?

Er

0
720
1220
1380
1190
790
370
—800 |—0.0128 | 0.3561
—280
—870
—800 (—0.0128 | 0.4849

2830

Eq.

(5.24a)
—~1520 |—0.0243 | 0.5721

—~2160 (—0.0346 | 0.6090
—2810 (—0.0450 | 0,6113
—2560 (—0.0410 | 0.5686
-+1230 |40.0197 | 0.3884

or
6990
40
320
1010
2160
3720
5530
6990
6990
6990
6990
6990
6990
6090
4330
2300
700

3530
0

30
120
330
730
1370
2300
3460
35630
3530
3530
35630
3530
3530
3530
3530

or

0
0
0

10.8p(0)
760
1510
2970
3020
3780
4530
3890
. 3240
2590
1040
1300
850

o(t}
70
140
210
280
350
420
360
300
240
180
120
60
0

0

t
0.004
0.008
0.012
0.016
0.020
0.024
0.028
0.032
0.036
0.040
0.044
0.048
.052
0.056
0:060
0.064
0.068

* Determined by trial as 143 (af)? at ¢ = 0.004 (Sec. 1.2b).

0

Table 5,7 Numerical Integration; Beam-girder System of Fig. 5.16

yUth = 2yl) — y—) 4 40 (Af)2

be
&
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With reference to the computations, the beam deflection exceeds the
elastic limit at 0.028 sec and the girder goes plastic at 0.036 sec. The
beam rebounds elastically after 0.048 sec. The maximum beam deflec-
tion (relative to the girder) is0.61 in., or 1.8 times the elasticlimit, and the
maximum girder deflection is 0.77 in., or 2.9 times its elastic limit.

Problems

5.1 a. Determine the transformation factors Kz and Ky for a cantilever beam under
uniformly distributed load. TUse the clastic-static-deflection curve as the assumed
shape.

b. Compare the natural frequency based on these factors with the exact expression
for the first normal mode.

¢. Derive the expressions for dynamic reactions (shear and moment at the fixed
end}.
Answer

a. Kp = 0.40; Ky = 0.257

e. V =03F 4+ 0.7R; M = Ri/2
5.2 A simply supported beam has a uniformly distributed mass m and, in addition,
lumped masses equal to m! at the third points of the span. It is subjected to a uni-
formly distributed dynamic load p(f). Compute the mass, stiffness, and load of the
equivalent one-degree system.
5.3 Determine the transformation factors for a square, uniformly loaded plate fixed
on two adjacent edges and free at the other edges. The shape may be assumed to be
y = Al — cos {(mz/2)][1 — cos (rz/20)]}, where I is the length of the sides and z and 2
are perpendicular coordinates with origin at the intersection of the fixed edges.
Answer

Ky = 0.0515

K; = 0.1325

5.4. A fixed-ended beam with concentrated load at midspan has a negative moment
capacity equal to one-half the positive moment capacity. Plot the trilinear resistance
function, and determine the effective stiffness of the equivalent bilinear function.

5.5 A one-degree system defined by the parameters given in Fig. 5.18 is subjected to
the load-time function shown. Using the approximate method of analysis for multi-
ple triangles (Sec. 5.5a):

a. Compute the maximum deflection.

b. Compute the value of R, which would result in x = 2.

30

& =100kips /f -
Fop = 20 kips £
g

M =1kip-sec?/ft “ 10— )

[

4] ]

1:‘_{!) : 0 02 1.0
t, sec

FIGURE 5.18 Problem 5.5.
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Answer
a. u=2.5
b. B = 22.2 kips

5.6 A triangular load pulse with zero rise time is applied to a one-degree system. If
the load duration is sufficiently long, Eq. (5.14) gives the required resistance with only
slight error. To investigate the range in which Eq. (5.14) nfight be used, plot the
ratio of B, given thereby to the correct value versus t/T for x = 3. How would the
value of 4 affect your conclusion?

5.7 Referring to Prob. 5.6, Eq. (5.16) gives the required resistance with only slight
error if the load duration is sufficiently short. To investigate the range in which
Eq. (5.16) might be used, plot the ratic of R. given thereby to the correct value
versus £./T for g = 3. How would the value of p affect your conclusion?
5.8 A square two-way slab is fixed on all edges and loaded by a uniformly distributed
pressure which is applied suddenly with an intensity of 1 kip/ft? and which then decays
linearly to zero at 0.2 sec. The slab properties are:

Span = 20 ft

Weight = 100 1b/ft*

I, = 40 in.4/ft-

E, =3 X% 10%1b/in.?

Mpse = Mpsp = Mpag = Mey = 2000 kip-in.
Using the appropriate transformation factors, compute the maximum central deflec-
tion:

@. By the respense chart (Fig. 2.24), based on an average load-mass factor and an
effective stiffness.

b. By numerical integration, taking into account all three stress ranges.
§.9 A reinforced concrete beam is fixed at one end, simply supported at the other,

and subjected to a uniformly distributed load, with the time function shown in Fig.
5.19. The beam properties are:

Span = 20 ft

b =12in.

d = 24 in. (total depth = 26 in.)
a = 0.015

oa = 60,000 psi, o, = 5000 psi
E, = 4 > 10¢ psi

S
220 f————-
- |
> I
W {

0 !

0 0.025 0.05
FIGURE 5.19 Problem 5.9. L, sec

The steel ratio given applies to both positive and negative moment capacities, Com-
pute by approximate methods the maximum dynamic deflection. Assume no
appreciable shear distortion,
Anstoer

Ymax = 2.9 in.
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; §.10 Design a fixed-ended one-way slab to resist a suddenly applied constant pres-
sure of & psi with duration of 0.3 sec. The following properties are given:
Span = 15 f{
2 = 0.01
oay = 50,000 psi, o, = 5000 psi
Design for u = 10.

§.11 A simply supported 24WF94 steel beam has a span of 20ft, a total dead weight
of 2000 1b/ft, and a dynamic yield strength of 45,000 psi. Determine the maximuym
dynamic deflection due to loads at the third points of the span, each having a rise
time of 0.04 sec and a constant value thereafter of 125 kips. What is the maximum
dynamic beam reaction?

5.12 Belect the most economical steel WF beam which will resist elastically a rec-
tangular-pulse load of magnitude 100 kips and duration 0.1 sec. The load is concen-
trated at midspan, and there is a uniformly distributed weight (in addition to the
beam iteelf) of 3000 b /ft. The span is 18 ft. It may be assumed that buckling is
prevented, but the shear capacity of the beam selected should be checked. o4, =
60,000 psi. ‘

5.13 Referring to Prob. 4.11, make an elasto-plastic numerical analysis (two degrees
of freedom) o determine maximum beam and girder deflections for the following
additional data: p(f) is a triangular pulse with zero rise time, an initial value of 400
Ib/in., and a duration of 0.25 sec, and the ultimate bending capacities are 200 kip-ft
for the beam and 350 kip-ft for the cantilever girder.

6

Earthquake Analysis
and Design

6.1 Introduction

The problems associated with the design of structures to withstand
earthquakes have long been of great interest to engineers. This is due
not only to the catastrophic nature of the possible failure but also to the
fact thai the difficulties encountered are techniecally intriguing. The
literature on the subject is voluminous and is increasing rapidiy. Con-
siderable progress is being made, but in spite of this fact, a really satis-
factory method of design still does not exist. 2™

The major difficulty lies in the prediction of the character and intensity
of the earthquakes to which a structure might be subjected during its life.
Strong earthquakes are rare events, and the number of actual measure-
ments which have been made is in & statistical sense very small. Design
must therefore be based on rather erude estimates of the expected ground
motion.

Another major difficulty lies in the fact that a realistic analysis for
earthquake should account for inelastic behavior of the structure. Very
few structures could withstand a strong earthquake without some plastic
deformation. In fact, it would be uneconomical to design a structure so
that it would remain completely elastic. The inherent difficulty of
inelastic analysis of multidegree systems, coupled with the irregular and
uncertain nature of the ground motion, makes a rigorous solution to the
problem impractical ¥
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It is obvious that in this brief chapter only an introduction to the sub-
jeet can be offered. Attention will be restricted to a few basic concepts
which will provide a foundation for further study.

6.2 Response of Multidegree Systems to Support Motion

In Sec. 2.6 the response to support motion of one-degree systems such as
that shown in Fig. 6.1 was investigated. It was found there that the
equation of motion could be written as

Mi + ku + ot = ~— Mijuofa(8)
or ) + wiy + 2,811, = -"gsafa(t) (6}-)

and the response could be expressed by
ult) = — % (DLF)a (6.2)

where u({) = relative displacement of the mass with respect to the support,
or
‘ wl) =y — ¥
and (DLF). = w [ Folr)e 84 sin w(t — 7) dr
ffeo = maximum support acceleration
fa() = time function for support acceleration
¥s = yaofa(t)
B = damping coefficient = ¢/2M

(DLF), is the dynamic load factor as previously defined, except that, in
this case, it is based on the time function for the support acceleration.
Any of the DLF expressions developed in Chap. 2 for a specific time fune-
tion eould therefore be used if this function represented the variation in
ground acceleration. It should be noted that the expression given above
for (DLF), is valid only if the initial ground velocity is zero.

—t
— 0

Ku ot
&
k s FIGURE 6.1 Damped one-degree system
s with support motion.
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It is & significant fact that the maximum relative displacement u, and
the maximum absolute acceleration §,. are directly related. To demon-
strate, we consider the equation of motion (Fig. 6.1)

Mij+et+ku=0
which, at maximum relative displacement (% = 0), becomes
M + kun = 0
Observe that ¢, and u, must occur simultaneously. Therefore

Gm = = %um = —wp = Fool DLF)g max (6.3)

which indicates that the maximum values of absolute acceleration and
relative displacement are related in the same way as the corresponding
terms for a pure harmonic motion. This is in the nature of a eoincidence,
and it should not be concluded that the response due to support motion is
harmonie, The fictitious velocity associated with this apparent harmonic
motion is sometimes called the spectral velocily, and its maximum value is
given by

Vo = Wlim = — % (DLF)u max (6.4)

In the snalysis of multidegree systems with support motion, we may
apply the modal method as developed in Sec. 3.7.* The modal equation
of motion (Eq. 3.46) for a lumped-mass system with external forces is

i

f(t) Fr1¢rn
r=1

f'{n + wn2An + QﬁnA'-n =

Fi

Y M.l
r=1

where the applied force at mass r is F,1f(). It was shown in See. 2.6 that
the response due to support motion is equivalent to the response due to
applied forces equal to —M4,. For the multidegree case, the equivalent
force at mass r would therefore be — M., = — M jj.f.(t), and if this is
used to replace Fi f({} in the above, the resulting modal equation for
support motion is

5
JoiDw Y, Mg
r=1

Ay + wa?d, + 28,4, = — (6.5)

i. M’¢3n
r=1

* The equations which follow are also presented in matrix form in the Appendix.
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It must be remembered that A, is the relative modal displacement with
respect to the support. Comparison of this equation with Eq. (6.1) for a
one-degree system reveals that the only difference is the presence of the

two summations in the right side of Eq. (6.5). Since these are constants ;g £
for & mode and merely modify the input acceleration, the same modifica- b N§
tion may be applied to the response of the one-degree system to obtain 3 a o
the modal response. If we define the modal participation factor by ~ + o o
- o o -
i e o i <
E Mr¢m o < “ o 1
r=1 S X i N g )
b= 5— (6.6) 1 '_h* \ l ¥ - SN
5 M., 47 M s e i—Rs
r=1 L_I § e « & —
then the modal displacement is given by
=5 3
Ant) = Tou(®) (6.7) % X
where u,,"() is the response of the one-degree system having circular fre- Ly ) |
quency w, and is given by Eq. (6.2), or T T 7
= —— &’ E'— = % P
wnd(f) = o3 (DLF) s (6.8) E I g g £
£ « o
where (DLF).. is the dynamic load factor in the usual sense, associated ® |9T ¥
with the frequency w, and the time function f,({). The modal displace- T 5[ " @
ment at mass r is i‘"l < l g
urn(t) = rnuno(t)¢m (69) - gy’/” {_I- "‘-.\\\. E T‘-‘J
% % 3 = &
and the total relative displacement is %|g %|g g ol = -
33 g8 £ 9 = ;
L I ® Ll!’ _3 i o 6
) = ¥ Tt drm (6.10) - g < 5 s A
= = i -
If the ground motion had been given in terms of displacement rather @ a © 24
than acceleration, the absolute response of the one-degree system could . .. '1&, ¢ b g
be obtained by (Sec. 2.6a) ¥ < *] *—l e‘ A
< n =]
o T N Be)
9 = H = Bl
340 = 1 (DLE), N SN Y A PSS
#5402 sliom k _______ & S
]

and the relative response by
() = yu(DLF)s — 3:(t) (6.11)

where ¥.(f) = y..f(f), and (DLF), is bé,sed on the time function f{t) rather
than fo(t). In the analysis of a multidegree system, Eq. (6.11) would be

used in place of Eq. (6.8) if y, rather than §, were specified as input.
249
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6.3 Multistory-building Analysis

To illustrate application of the modal analysis developed in the preceding
section, we consider the two-story steel frame shown in Fig. 6.2. The
weights of the roof, first floor, and walls are indicated in Fig. 6.2¢, as are
the moments of inertia of the structural elements. The lumped masses at
the floor levels which are given in Fig. 6.2b have been computed on the
basis of the floor weights plus that of the tributary wall areas. The
elastic-stiffness coefficients shown in Fig. 6.2¢ have been computed by
conventional frame analysis. If there were no support motion, the condi-
tion of dynamiec equilibrium would be as indicated in Fig. 6.2d.

Before considering the actual input, we shall establish the normal modes
of the system. Based on Fig. 6.2d, the equations of motion are

Magjs + 48y2 — 528y, = 0
My — 52.8y. + 1068y, = 0
When computing normal modes no ground motion is considered, and
therefore the w’s in Fig, 6.2d are both absolute displacements and those
relative to the ground. Operating on these equations in the usual way,
we find that the natural frequencieg are

w1 = 9.0 rad/sec wy = 23.5 rad/sec
and that the characteristic shapes may be defined by

First mode:
¢11 _ +100
o = +1.57
Second mode:
$12 = +1.00
¢oy = —1.06

We now wish to make an analysis of the building frame for the ground
motion given in Fig. 6.3. This sinusoidal motion is not intended to be

¥

AR

O.5sec _!
S5 = Yopsin i1t
= (Q.5sin 4wtin.

rigurs 6.3 Example. Assumed support motion.

nal

Mo
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typical of earthquakes, but will serve to illustrate analysis for ground
motion. We shall first make a completely elastie analysis and then obtain
an inelastic solution for the case in which the column strengths are limited
80 a8 to cause such behavior. A comparison of these two solutions will

serve to demonstrate the significance of plastic behavior in earthquake
design.

a. Elastic Solution

Making use of Eq. (6.6), the modal participation factors are computed
as follows:

M, $.n
r, = ;_‘L
E M"¢r2u

_ 0.204(1.00) + 0.177(1.57)

_ 0.294(1.00) 4 0.177(— 1.06)
Ts = 0.294:(1.00)2 + 0-177'(‘1.06)2 = 40,215

The dynemic load factor (ignoring damping) is given by
(DLF), = wn [ 1(+) sin walt — 1) dr

where f(r) = sin Qr. Integration yields

1 . .
(DLF),, = 1_'-9_2/7,,2 (Sm o — E s w..t)

n

which is the same as Eq. (2.34b). The modal values of this quantity are

(DLF), = —1.05(sin 4xt — 1.40 sin 9.0£)
(DLF): = 41.40(sin 4=t — 0.535 sin 23.5{)

By Eq. (6.11), we have for the two modes

() = 0.5(DLF); — 0.5 sin 4wt

= —1.025 sin 4at + 0.735 sin 9.0¢
u?(t) = 0.5(DLF), — 0.5 sin 4nt

= 0.2 sin 4t — 0.375 sin 23.5¢

Finally, the relative displacements of the two masses as given by Eq.
(6.10) are

wi(t) = (0.784)[u.*(£)1(1.00) + (0.215) [u:°(t)](1.00)
= 0.784[u.°(t)] + 0.215[w.*(t)]

us(t) = 0.784[u,*(1)]1(1.57) + (0.215)[u=°()](—1.06)

1.230[u,%(f)] — 0.228[u°(t))

]
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FIGURE 6.4 Example. Response of two-story frame.

The first of these is also the first-story distortion, i.e., the motion of the
floor above relative to the floor below. The second-story distortion would
be given by

The story shears which determine the magnitude of column bending
would be computed by (Fig. 6.2d)

Ry = 48us(f) — 52.8u,{t)
By = 5du.(f) — 4.8uq(d)

The magnitude of these shears, computed after evaluating the above
expressions for 4,.°(f) and u.(f) at various times, are plotted in Fig. 6.4
through two eycles of ground motion.

The story shears computed above are very large; e.g., the maximum
in the top story is about 0.6 of the roof weight and that in the bottom
story is about one-third of the total building weight. These are much
larger than would normally be used for earthquake design, even though
the assumed ground motion is not particularly severe as compared with
actual earthquakes. There are several reasons for this difference:
(1) earthquake motions are not perfectly harmonic; (2) damping was
ignored in the analysis; and (3) some plastic deformation of the columns is
permissible, and the column strengths need not be as great as the shears
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Fiaure 6.5 Idealized two-story frame.

computed above indicate. The validity of the last point will now be
demonstrated.

b. Elasto-plastic Solution

Suppose that the definition of the problem is now modified by setting
elastic limits for the story shears. It will arbitrarily be assumed that
these values are approximately one-half of the maximum shears computed
in the elastic analysis above. Thus the maximum plastic story resistances
are taken fo be

BEm = 20.5 kips R, = 21 kips

In all other respects, including column stiffness, the strueture remains as
shown in Fig. 6.2a and the ground motion remains as shown in Fig. 6.3.

As discussed in See. 3.9, it is difficult, and probably not worthwhile, to
include the effect of girder flexibility in an elasto-plastic analysis of a
building frame. We shall therefore assume the girders to be rigid, with
the result that there are only two springs in the idealized system. The
stiffness of each spring corresponding to a story is

L _ 262D
- 124

where b is the story height, and I is the moment of inertia of one column
in the story. Thus the idealized dynamic system is as shown in Fig. 6.5.
The resigtance function for each story is assumed to be bilinear.
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Table 6.1 Inelastic Analysis of Two-story Building Frame (Fig. 6.5)

Yl = 2y — =1} | 0 (af)s

B R L fi1
t Vs YL~ ta {Eq, v:r— (Eq. (Eq. vi {Eq. ]
6.18d) 6.12c) | 6.1%b 6.12a)

0 0 0 0 0 0 [ 0 0 0
0.025 | +0.154 | —0.151 -84 -0.003| -0.2]| +27.9 (+0.003% +1.1 0%
0.050 | +0.294 | —0.270 | —15.0 | —0.023 | ~1.3 | +46.6 | +0.024 +7.3 | 4+0.001
0,076 | +0.405 | —0.331 | —18.4 | —0.067 | —3.90 | +490.3 | +0.07¢ +22.0 | 40.007
0.100| +0.476 | —0.320 | —17.8 | —0.,128 | —~7.4 | +85.4 | +0.155 +41.8 | +0.027
0.125 | 40500 | —0.242 | —18.5 | —0,185 | —10.7 | +8.5 ; +0.258 +860.4 | +0.073
0.150 | 40.475 | —0.108 | —6.0 [ —0.210 | —12.2 | —~21.1 | 4+0.367 +69.0 | +0.157
0.176 | +0.405 | +0.058 | +3.2 [ —0,179 [ ~10.4 | —46.2 | 40.463 +58.7 | +0.284
0.200| +0.204 | +0.236 | +13.1 | —0.082 -4.8 | —60.9 | 40.530 +27.2 | +0.448
0.225 | +0.154 | +0.405 | +22.5 | +0.070 | +4.1 | ~62.5 | 40.550 —-23.2 | +0.629
0.250 1] +0.549 | +20.5 1 40.247 | +14.3 | —51.6 | +0.549 —80.6 | +0.796
0275 —0.154 | +-0.661 | +20.5 | +0.406 | +21,0 | —28.9 [ +0.507 | —118.7 | +0.013
0.300 | —0.294 | +0.741 | +20.6 | 4+0.508 | +21.0 [ —28.9 | +0.447 | —118.7 | +0.956

*ALt = 0.025, ¥y = M (Fatt = 0.025) (Af)? (established by trial).

The equations of motion in terms of absolute displacements, as derived
from the condition of dynamie equilibrium shown in Fig. 6.5b, are

(a) Mz’yz + Rz = 0

) Mg+ R, — Ry =0

where (6.12)
(o) Rs = ka(ys — 3o, or 21 max

(d) Ry = k(1 — y.), or 29.5 max

Since the system is nonlinear, numerical analysis provides the easiest
method of solution, and the first few steps are shown in Table 6.1. Since
the smaller natural period is 0.27 sec (2x/w;), the time interval is taken as
0.025 sec. Analyses such as this can be executed with the aid of a com-
puter for buildings of many stories. For very tall buildings, it may be
desirable to lump the masses at every second or third floor rather than at
each floor in order to reduce machine time.

The result of the inelastic analysis is plotted in Fig. 6.6 in the form of
story distortions. Also shown are the elastic responses computed in
Sec. 6.3a. The important point to be noted is that the distortions of the
inelastic structure are actually smaller, even though the maximum story
resistances are only one-half of the resistances developed in the elastic
case. This is true primarily because the plastic deformation tends to
eliminate the resonant effect of the sinusoidal input. Even though earth-
quake motions are not harmonie, such resonant effects do oceur, and the

T i araamt Tl b
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FIGURE 6.6 Example. Elastic and inelastic responses.

general conclusion reached here is still valid. Since the cost of the
structural frame is related to the resistances provided, the economie
advantage of permitting plastic deformation is apparent. This does, of
course, result in some permanent distortion, but if kept within reasonable
limits, does not imply serious damage.
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6.4 Response Specira

Before proceeding to the actual earthquake problem, it will be useful to
introduce the concept of a response spectrum. This is a plot giving the
maximum responses (in terms of displacement or stress or acceleration,
ete.) of all possible linear one-degree systems due to a given input, which
in the present case is & ground motion. The abscissa of the speetrum is
the natural frequency (or period) of the system, and the ordinate is the
maximum response. Such a plot is shown in Fig. 6.7. Thus, in order to
determine response for the particular input, we need know only the
natural frequeney of the responding system 0.5

To illustrate the construction of a response spectrum, consider the
ground acceleration shown in Fig. 6.84, which correspends to the ground
displacement shown in Fig. 6.85. We wish to plot spectra for maximum
relative displacement and maximum absolute acceleration of undamped

i
’ I
—_ 2.56" = maximum ground
g é —\ displacement
=
e 2
[ gy [
£8 Fo=g
g g £z = 0.1 sec
58
=% N
o K
0 >
o] 107 20nr w
{d}
1
S
"S"E' 2)"}0\'
5.E?
ot
8.
2w =
EZ /
20 s
E2lg Yso=¢
st ts =0.1sec
=
O e
0 207 407 w

(e}

FIGURE 6.8 (Continued)
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linear systems. According to Eqs. (6.2) and (6.3), the desired values are
given by

(ﬂ) lumul = % (DLF)a.mu (6.13)
(b) R 1y“'m-x| = yw(DLF)n.mlx

The time function for the acceleration is

L =1-+ itz
la
ful) = 0 t > 2

and the dynamic load factor is

(DLF), = f: (1 - é) sin W(t - ‘T) dr i ’<’ ztd

which, when integrated, gives

(DLma=1-msm+ﬁf:‘—£ L2 (6.14)

After time 2t4, we may express the DLF as

(mm=mmmmm-m+@mmﬂ#;@wm

which is based upon consideration of the DLF and its derivative at

¢t = 2¢{; a8 an initial displacement and velocity for the following motion.
The maximum value of (DLF). which may be obtained from Eqgs. (6.14)
and (6.15) depends only on the ratio t4/T. This is plotted in Fig. 6.8¢.

We may now determine the maximum responses by Eqs. (6.13). To
take a numerical example, let f.. = g (the acceleration of gravity) and
t¢ = 0.1 sec. For these input parameters the spectrum for the absolute
value of maximum relative displacement is as shown in Fig. 6.84 and that
for maximum acceleration, in Fig. 6.8¢. In connection with the use of

Eq. (6.13a) for relative displacement, it should be noted that, as w — 0,

(DLF)a,mux 8lso approaches zero and the value of tm.a is indeterminate.
However, it may be shown that, as @ — 0, %mne, approaches the maximum
ground motion. In fact, the ordinates to the spectra at the extremes of
natural frequency are intuitively obvious. For example, if w is very
large, i.e., the structure is very stiff, the acceleration is applied suddenly
with a corresponding DLF of 2, and hence the maximum aceeleration of
the mass is twice the initial ground acceleration. At the same time the
spring distortion is negligible (since the stiffness is great), and hence the
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FIGURE 6.9 Log-log response spectra.

motion of the mass is the same as that of the ground; i.e., the relative
motion is very small. On the other hand, if w is very small, the spring is
flexible, and henge the mass remains stationary while the ground moves
beneath it. Thus the relative displacement equals the ground displace-
ment, and the acceleration of the mass is zero.

An alternative representation of the response spectrum is the log-log
plot in Fig. 6.9, where the result of the preceding example is repeated.
"This type of plot has the advantage that all spectra for the kinds of input
considered herein consist essentiaily of two straight lines, except that there
is some distortion near the intersection. This is true because, regardless
of the details of the input, the displacement response in the small-
frequency range is a constant equal to the maximum ground displacement,
and, at large frequencies, the response acceleration is a constant equal to
a multiple of the maximum ground acceleration. In the latter frequency
range the maximum relative displacement is given by

ysu yw

l'Mmaxi = aa}?z a@;_f—)g
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FIGURE 6.10 Reaponse spectra for sinusoidal input.

where « is a constant which depends on the type of input (¢ = 2 in the
example of Fig. 6.8). The last equation is, of course, a straight line on the
log-log plot. The fact that all spectra have the same general form on a
log-log plot makes the estimation of & spectrum for a poorly defined input
somewhat eagier. If the spectrum gives relative displacement as in
Fig. 6.8, the absolute acceleration of the response can be computed
directly therefrom and a second plot is not really necessary.

As a second example we consider the spectrum for a sinusoidal variation
of ground motion. The acceleration is shown in Fig. 6.10a, and the corre-
sponding ground displacement is shown in Fig. 6.10b, with the assump-
tion that there is an initial velocity of —#./Q. The maximum DLF for
the damped steady-state response (which does not depend on the initial
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conditions) was developed for this input in Sec. 2.5b and is given by
Eq. (2.41):

1
,\/(1 -— Qz/wz)z + 4(139/0’2)2

(DLF)4,max =

This is plotted in Fig. 6.10c for 20 percent of eritical damping; that is,
B/w = 0.2. The separate response spectra for relative displacement and
absolute acéeleration, computed by Egs. (6.13), are plotted in Figs. 6.10d
and e for the specific parameters ., = g and Q = 2 rad/sec. Both
curves display the expected peak near the point of resonance. At small
frequency the maximum relative displacement equals the maximum
ground displacement, and at large frequency u approaches zero as the
maximum acceleration response approaches the maximum ground
acceleration. In the latter case, the mass of the system simply “rides”
along with the ground and the two motions are identical. The log-log
plot of the spectrum for the sinusoidal input with 20 per cent damping is
also shown in Fig. 6.9, where the two straight lines mentioned previously
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FIGURE 6.11 Example. Beam with support motion.

correspond exactly to the maximum ground displacement and the
maximum ground acceleration; that is, « = 1.

To illustrate the application of the response-spectrum technique to an
actual structural element, consider the simple beam shown in Fig. 6.11.
Suppose that both supports move vertically in the manner indicated in
Fig. 6.8¢. We wish to determine the maximum bending stress in the
-beam resulting from this support motion. Only the fundamental mode
will be considered since higher modes are of little importance.

In order to use the response spectrum, we first compute the natural
frequency by Eq. (4.7).

r [E] x 100
I=op\wm = 3(240)¢ \fb._2 = 6.1 cps

Reading either Fig. 6.9 or 6.84, we find the maximum relative displace-
ment of the equivalent one-degree system to be

Umax = 0.44 in.

This is not the beam deflection we seek, since the motion of the beam
support is not directly equivalent to the motion of the support of the
equivalent system. For the present example involving distributed mass,
it is apparent that Eq. (6.6), which gives the modal participation factor,
should be written

[ : mo(x) dx
[} mig@)) do

Substituting ¢(z) = sin (rz/l) for the fundamental mode and evaluating
the integrals, *we find

P=

ERTTS

* Values of these integrals are given in Table 4.1 for beams with various support
conditions and uniform mass.
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Therefore, by Eq. (6.7), we obtain

tH~

Apax = Tul, = = X 0.44 = 0.56 in.

m

where A sy is the maximum displacement of the beam at midspan relative
to the supports.

Since we are considering only the first mode, the bending moment is
computed as follows:

u

where u = A sin E;_c

% 7t . xT

o - TAEsh T

2
Therefore Mone = U0 A bz =
The maximum bending stress is
¢ Eer

Tmax ™ mmaxj—" = z—z Amax

where ¢ is half the beam depth. Therefore

(30 X 10%)(T)xt
Tinax = W

which i3 the desired result.

X 0.56 = 20,100 psi

6.5 Earthquake Ground Motions

The motions of the ground during an earthquake are essentially random
Le., the peaks of acceleration, both positive and negative, have various
amplitudes and occur at various time intervals without any regular
pattern. These oceur in all directions, but our attention will be restricted
to horizontal motions, which are the most damaging. Up to the present
time (1964) very few records of actual strong-motion earthquakes have
been obtained, and there is therefore little statistical basis for the predic-
tion of future earthquakes. In any event, we shall never be able to pre-
dict the exact nature of the earthquake for which a given structure should
be designed.

There are two possible solutions to the problem of defining the input.
First, we could adopt a “‘standard” earthquake, with a certain amplitude
of acceleration and time variation. This would be comparable with the
approach commonly used with other types of loads (e.g., standard design
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truck loads), but would make even less sense in the case of earthquake,
because not only the magnitude of the input, but also the time variation,
has an important effect on structural response. A second and more
promising approach is to treat the ground motion as a random variable.
By this method the motion could be envisaged as the superposition of
many sine waves of various frequencies, the amplitudes of which have
certain probability distributions. Alternatively, the mqﬁion could be
represented by a series of random impulses. If the intensity, or “power,”
of the randoem input is selected so as to be equivalent to that of actual
measured earthquakes, the structural response should be similar. This
type of analysis produces a probabilistic result; e.g., it would give the
probabilities that the relative displacement of the structure would not
exceed certain values. Such an approach has not been developed suffi-
ciently for direct application, and further discussion is beyond the scope
of this text.3*34

The most practical approach to the problem involves the use of response
spectra such as discussed in Sec. 6.4. Although this method is perhaps an
oversimplification and certainly approximate, it appears justified, in view
of the limited data available on earthquake motions. Many investigators
have computed spectra from actual earthquake records. This is accom-
plished by the direct application of Eq. (6.2). The DLF may be com-
puted by numerieal integration of the measured aceeleration time funection
fo(t). The input is normally in the form of acceleration rather than dis-
placement, because field instruments measure the former. Response
spectra derived in this way are of course limited in usefulness since they
apply only to the particular earthquake which happens to have been
recorded. However, they are very useful in establishing the general
nature of response to earthquake.

Based upon spectra compuied for actual earthquakes, it is possible to
estimate a proper spectrum for general purposes. It is here that the log-
log plot for spectra (Fig. 6.9) is particularly useful. Itwas noted in Sec. 6.4
that the general forms of all spectra are similar, and this fact is helpful in
estimating the earthquake response spectrum. Blume, Newmark, and
Corning?* have suggested that the spectrum can be approximated by
three straight lines as follows: (1) a line of constant acceleration equal to
twice the maximum ground acceleration, (2) a line of constant speectral
veloeity equal to 1.5 times the maximum ground velocity, and (3) a line of
constant displacement equal to the maximum ground displacement. A
spectrum constructed in this way is shown in Fig. 6.12 as curve a. It is
based on the May 18, 1940, El Centro, Calif., earthquake (N-5 component),
for which the recorded maximum quantities were 0.33¢g, 13.7 in./sec, and
8.3in. It is intended to apply to elastic systems having between 5 and 10
percent of critical damping. For the El Centro input given above, the
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FIGURE 6.12 Idealized response spectrum for El Centro
earthquake, May 18, 1940, N-S component and SEAQC
recommendation.

three straight lines are defined by

(1) Umax = (Yso)max = 8.5 in. small f
_ L5(fu)mes _ 3.3 : :

(2) Umax = Toaf =¥ in. intermediate f
_ 2feo)max _ 6.6,

(3) Uinax = W = fT 1, 1a.rgef

The simplified speetrum thus defined and shown in Fig. 6.12 is based on a
particular earthquake and may not be appropriate for general design
purposes. Additional data which will become available in the future may
indicate that the amplitudes of ground motion and the multiplying coeffi-
cients should be altered.

6.6 Earthquake Spectrum Analysis of Multidegree Systems

In Sec. 6.2 we developed a procedure of modal analysis for structures sub-
jected to ground motion, and in Sec. 6.5 we discussed response spectra for
earthquake. We now combine these two concepts in order to make an
approximate elastic multidegree analysis for earthquake.

Since the response spectra give only maximum response, we shall obtain
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the maximum values for each mode, which must then be superimposed to
give total response. The actual time variation of the design earthquake
motion is unknown, and therefore it is impossible to compute the time
variation of response either for a modal component or for the total. A
conservative upper bound for the total response may be obtained by add-
ing numerically the maximum modal eomponents. However, this is
excessively conservative, and it has been suggested that the *‘probable’
value of the maximum respongse is approximately the square root of the
sum of the squares (root mean square) of the modal maxima.?® This is
based on the assumption that the modal components are random varia-
bles, which is consistent with the random nature of the input. The aecu-
racy of this approach increases with the number of degrees of freedom.

The elastic analysis demonstrated below is not intended to represent a
proper method for earthquake design. A design on this basis would be
too conservative and inconsistent with the observed behavior of structures
during earthquake. The primary reason for this discrepancy is that most
structures can undergo some plastic deformation without excessive
damage. As demonstrated in See. 6.3, this capability results in a con-
siderable decrease in the required strength and stiffness of the structure.
Unfortunately, inelastic analysis of multidegree systems subjected to
random earthquake motion cannot easily be accomplished. Considerable
research is being conducted on the problem (1964), and in time satis-
factory methods will probably be developed. In the meantime, the
empirical approach as discussed in Sec. 6.7 is the most practical design
procedure. The example of elastic analysis given below is presented to
give the student a better insight into the general problem and to demon-
strate a method which would be applicable to those special cases in which
a truly elastic response is desired.

a. Building-frame Example

To illustrate modal spectrum ansalysis, we congider the three-story
building frame shown in Fig. 6.13a. If this is considered to be a “shear
building” (See. 3.8), it may be represented by the close-coupled system
shown in Fig., 6.13b. Assuming the masses and stiffnesses shown, the
natural frequencies and characteristic shapes have been computed, with
the results tabulated in Fig. 6.13c (Sec. 3.4).

The next step is to compute the modal participation factors as given by
Eq. (6.6). These computations are shown in Table 6.2.

It will be assumed that the input can be represented by the response
spectrum shown in Fig. 6.12 (curve a). It will be recalled that this is an
empirical representation of a particular earthquake and assumes a
moderate amount of damping in the system. Its validity for general
design purposes has not been proved. The responses of the equivalent
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FIGUEE 6.13 Example. Three-story shear building.

Table 6.2 Modal Participation Factors (Structure Shown in Fig. 6.13)

Firat mode Becond mode Third mode
Mass M.
Mr'ﬁrl Mr¢:1 Mr¢r2 Mr¢:z Mr¢r3 Mr¢§3
1 8 2.51 0.79 -4.09 2.09 25.4 80.9
2 8 5.49 3.77 -3.91 1.91 —17.4 38.0
3 4 4.00 4.00 4.00 4.00 4.0 4.0
z +12.00 8.56 —4.00 8.00 12.0 122.9
. z‘ﬂfr¢rn
= ST Iy = 4140 r; = —0.50 r; = 4+0.098

one~degree systems in terms of relative displacement w0 ... are read
directly from Fig. 6.12 and depend only on natural frequency. The
modal responses A, me.x are simply those values multiplied by the corre-
sponding participation factor [Eq. (6.7)].

Mode f Uy ax Apmax = Taleh or
1 1.00 cps |3.3 in. 4.6 in.
2 2.18 1.4 0.70
3 3.18 0.66 0.065
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Having the maximum modal amplitudes, any other function such as
displacement or acceleration at a point or a certain force or stress may be
computed by Eq. (6.9). For example, the maximum modal components
of first-floor deflection (relative to the ground) are obtained by multiply-
" ing the modal amplitude by the characteristic-shape factor for that floor:

Mode $1n {%15) maax
1 0.314 1.44 in.
2 —0.511 0.36
3 3.18 0.21

Of course, signs should not be attached to these modal deflections, since
each could be in either direction. The upper bound for the maximum
deflection of this floor is the numerical sum of the modal components, or
2.01 in. The “probable” maximum, or root mean square, is 1.50 in.
The latter may not be appropriate in this case since there are only three
degrees of freedom. In fact, the maximum may be expected to lie some-
where between the two values computed.

Of primary interest in earthquake design are the maximum values of
the story shears. To obtain these, we first multiply the modal amplitudes
A, nae by the relative story displacements corresponding to the modal
shapes, ¢a. This provides the maximum story displacement A, of the
response, which, when multiplied by the spring constant, gives the story
shear. The somputations leading to these values are shown in Table 6.3.

Table 6.3 Maximum Story Shears by Spectrum Analysis; Syetem in Fig. 6§.13

First slory Second atory Third story
Mode
$A1L = P1n [Aun = AdudAr| Bar = g — Ppn |Arn = ApPAs| PAr = Pan — P2 | Ban = Ay
1 0.314 i.44 0.372 1.71 0.314 1.44
2 0.511 0.38 0.022 0.02 1.489 1.04
3 3.18 0.21 6.36 0.35 3.18 0.21

Absolute max story

dispincement, 2 .01 in. 2 .08 in, 2.89 in,
“Probable’” max

story displace-

ment 1.50in. 1.74 in, 1.79 in.
Abaclute max atory

shear 3020 kipa 2080 kips 1345 kips
"'Probable'’ max

story shear 2250 kipa 1740 kips 895 kips
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It may be observed that the first mode makes the major contribution in all
cases, although in the top story the second-mode effect is also significant.

It may also be of interest to compute the maximum expected horizontal
acceleration of a floor. In any mode the maximum absolute acceleration
of & mass is simply the maximum displacement times the square of the
natural frequency; that is, (Jr)max = Aumaxprawe?. For example, the
acceleration of the top floor is computed as follows:

Mode wa? An,nuu Pay ('gan) max
1 39.2 4.6 +1.00 180 in. /sec?
2 188 0.70 +1.00 132
3 398 0.065 +1.00 26

Third fioor absolute maximum scceleration, 338 in. /sec?
Third floor * probable’” maximum acceleration, 225 in. /sec?

As would be expected, the higher modes are relatively more important
in the case of acceleration. The “probable” value computed above is
about 0.6g, which is very severe with regard to nonstructural damage to
the building and its contents.

6.7 Practical Design for Earthquake

As discussed in the foregoing sections, we are not presently capable of
applying rigorous methods of analysis to the design of actual structures to
withstand earthquake. This is not meant to imply that we are unable to
execute satisfactory designs. Although the detailed behavior of a given
structure cannot be accurately predicted, we can ensure with reasonable
confidence that it will survive. Survival requires that the structure be
able to withstand a moderate earthquake, such as might occur several
times during its life, with only slight damage. Tt should also be able to
withstand the most severe earthquake without collapse. The latter
requirement can be met if advantage is taken of the ability of most struc-
tures to absorb energy by inelastic response. It is apparent that, in
earthquake-resistant design, the structure should be proportioned and
detailed so as to ensure the duetility necessary for inelastic behavior.
Current practice in earthquake design is embodied in design codes, one
of which is discussed below. TIdeally, these are based on experience gained
by the observation of structures which have undergone earthquake condi-
tions, coupled with an understanding of the nature of dynamic response
to support motion. Although special structures may justify more
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t__“_m_|

Miim = KCW =KCgM
,_-b

V=KCW FIGURE 6.14 Seismic coeflicients.

thorough investigation, the better codes provide a simple yet adequate
method of design.

a. Degign Codes

As an example of a commonly used code, we shall consider the Recom-
mended Lateral Force Requirements (1959) of the Structural Engineers
Association of California (SEAOC). Essentially, the procedure specified
therein is based on only the first mode of the structure, which is justified
by the belief that the higher modes are of secondary importance. By
assuming a characteristic shape for the first mode, it is possible to convert
the maximum condition of response into a set of equivalent static forces.
The actual design may then be executed on the basis of static analysis.

The basic concept of the SEAOC recommendation is contained in the
two formulas

V =KCW (6.16)
0.65

where V' = total dynamic base shear

W = total weight of building

T = natural period of first mode

K = coefficient, varying between 0.67 and 1,50
In the above, C, the seismic coefficient, is equivalent to the maximum
acceleration expressed as a fraction of g, since, when multiplied by the
weight, it gives the maximum horizontal inertia force (Fig. 6.14). The
coefficient K is intended to reflect the ability of the structure to deform
into the plastic range. For example, the smallest value (0.67) applies to
moment-resisting frames which are relatively ductile, while higher values
apply to less ductile arrangements such as those making use of concrete
shear walls (K = 1.33).

The expression for C may be interpreted in the light of the discussion of

Sec. 6.5. By reference to Fig. 6.14 and with K = 1, it is apparent that

Earthgquake Analysis and Design 271

FIgURE 06.15 SEAOC recommendation
for earthquake forces on buildings,

——

V=3F =ACIW,

the spring distortion and the seismic coefficient are related by

btnax = V = CgM

Therefore Ymax = Cg‘% = C_g

Substituting Eq. (6.17) for C, 1/f for T, and 2rf for », we obtain

Umax = Ofg in, (6.18)

where f is in cycles per second. This equation represents a response
spectrum as plotted in Fig. 6.12 (curve b), where it appears as a straight
line. When compared with the idealized elastic spectrum previously
used, Eq. (6.18) indicates a less severe response over most of the frequency
range. This is to be expected, since, as discussed previously, the elastic
spectrum is unduly conservative. The important point being demon-
strated is that Eq. (6.17), and hence (6.18), takes into aceount the effect
of the natural period In a rational manner.

The response spectrum represented by Eq. (6.18) could of course not be
used for elastic modal analysis as in Sec. 6.6 because it implies inelastic
response. However, the question should not arise, since the code con-
siders only one mode of response. In the mode considered, the maximum
inertia force on mass r of a lumped-mass system is given by

Fr = Mr1m¢r

where A, is the maximum modal acceleration, and ¢, is the coordinate of
the characteristic shape at mass r. Furthermore, for dynamic equi-
librium, the sum of all inertia forces on a building must equal the base
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shear. Thus
An Y M=V
Eliminating A, from the last two equaﬁons, we obtain, for the inertia
- force on mass r,
F, = fﬂ'ﬁtﬂ v
Y Mo,
The SEAOC recommendation implies that ¢, = h,/H, where h, is the

height aboveground of the rth mass and H is the total height of the strue-
ture. By this assumption

F, = M)
¥ M.(h./H)
or F,= WAy (6.19)
S Wk,

which is the SEAOC recommendation for the distribution of lateral force.
The resulting set of forces in dynamic equilibrium is shown in Fig. 6.15.
For design purposes the building may be analyzed as though these forces
were applied statically.

As indicated above, Eq. (6.19) is based on the assumption that the
characteristic shape of the fundamental mode is a straight line from the
foundation to the top of the building. This is of course an approximation,
but is reasonable for typical buildings. The justification for the assump-
tion may be understood if it is recognized that the total distortion of a
typical building is the sum of two effects: (1) the shear distortion in the
stories of the frame, and (2) the change in length of the colummns due to
overall bending of the building. The former tends to produce a deflected

shape which is concave to the left, and the latter a shape concave to the .

right. The combined effect results in a shape which approaches a straight
line.

To illustrate application of the SEAOC code, we consider again the
three-story frame shown in Fig. 6.13, which was analyzed in Sec. 6.6,

using the elastic response spectrum. The weights of the three floors are

Wi= W, = 3090 kips and W; = 1545 kips, and the total weight is
7725 kips. The fundamental mode has a natural frequency of 1.00 cps,
or a period of 1.00 sec. Using Eq. (6.17), we find C = 0.05, and if K is
taken to be 0.67 (moment-resisting frame), the total base shear is

V = KCW = 0.67 X 0.05 X 7725 = 259 kips
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According to Eq. (6.19), the floor forces are
7 3090 X 12 9.6 X 10°
1

~ 3090 X 12 + 3090 X 24 + 1545 X 36 < 200 = Teg,700 — -8 kips
_ 3090 X 24 o :

F: = ggro0 X 259 = 115 kips
_ 1545 X 36 s

Fy = 166,700 X 259 = 86 kips

Thus the design values of the story shears are: °

First story, 259 kips
Second story, 201 kips
Third story, 86 kips

Comparison of these values with those tabulated in Table 6.3 reveals that
they are approximately in the same proportion but that the code values
are roughly one-tenth of those given by the elastic analysis. The fact
that the relation between the three story shears is similar in the two cases
indicates that the SEAOC recommendations are a reasonable representa-
tion of the dynamic response. The fact that the code values are very
much smaller should not be alarming because the elastic analysis is known
to be excessively conservative. The response spectrum on which the
latter analysis was based (Fig. 6.12, curve a) is an approximation for a
rather strong earthquake, and a structure should be expected to undergo
considerable plastic distortion under that condition. Furthermore, the
two sets of shears are not exactly comparable because the code values
would be used with allowable design stresses rather than yield values.

Problems
6.1 The following data are given for an yndamped one-degree system with sinusoidal

support motion (Fig. 6.16): & = 100 kips/in.,, M = 0.50 kip-sec?/in., and §,, = 125
in/sec). Determine the maximum relative motion of the mass with regpect to the

%

13_ ) Ehj{;osinﬂt
&

FIGURE 6.16 Problem 6.1. ¥

support and the maximum absolute scceleration of the mass for the following two
cases: a. @ = 20 rad/sec; b. @ = w, the natural circular frequency. Note that the
support acceleration continues for only one cycle (See. 2.5).
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Answer
@. %max = 0.88 in.
Jusx = 177 in./sec?
b. t%max = 1.96 in.
Pmax = 392 in. /sect
6.2 A cantilever beam is described by EI = § X 101 Ib-in.t, m = 0.1 Ib-sec?/in.z,
and [ = 200 in. If the support motion (transverse to the beam) is the same as in
Prob. 6.1, what is the maximum relative motion of the end of the beam when 0 =
50 rad/sec? Consider only the. first beam mode and assume the shape of that mode
to be the same as the static dead-weight deflected shape.
Answer
HYmaxr = 0.17 in.

6.3 The support of the one-degree system in Prob. 6.1 moves ag indicated in Fig.

6.17. What are the maximum relative displacement and the maximum absolute
acceleration?

¢, sec FIGURE 6.17 Problem 6.3.

6.4 The support of the two-degree system shown in Fig. 6.18 moves as indicated.
Plot the relative deflection of M up to ¢ = 0.2 sec. The natural frequencies of this
aystem were determined in Prob. 3.1.
6.5 Referring to Prob. 6.4, compute the maximum values of the modal components
of the absolute deflection of M.
Anaswer

Al max = 0.196 ft

Azmax = 0.044 ft

6.6 If the strengths of the springs in Prob. 6.4 are Rm1 = 80 1b and R,: = 40 ib, the
response will reach the plastic range. Using a numerical analysis, compute the
permanent distortion caused in each spring.

6.7 Plot an elastic response apectrum as in Fig. 6.9 for the ground motion shown in
Fig. 6.18.

’

T

¥ 4 = 4000 1b/ft
M, = 4 Jb-sec/tt

k= 2000 b/t

My = 21b-sec? /1t

FIGURE 6.18 Problem 6.4.
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6.8 .Using the idealized earthquake response spectrum of Fig. 6.12, determine the
maximum: modal amplitudes for the two-degree system of Prob. 6.4. Assuming that

the modes may be sdded numerically, what would be the maximum relative displace-
ment of 3,? The maximum force in spring 17
Answer

A1max = 0.35 in. : .
Az.max = 0.042 in.

Uz,max = 0.74 in.

Bimax =130 1b

6.9 Repeat Prob, 6.8 for the three-story building frame of Prob. 3.5.

6.10 Determine the design story shears according to the SEAOC recommendation
for the building frame of Prob. 3.5.



7
Blast-resistant Design

7.1 Introduction

Since the end of World War II a great deal of research has been condueted
on the response of structures to the effects of nuclear weapons. This
effort has not only resulted in the development of techniques by which
structures may be designed to resist nuclear attack, but has also con-
tributed very appreciably to the field of structural dynamies in general.
The methods of dynamic analysis which will be used in this chap-
ter have been presented previously. The problem discussed herein
differs from earlier examples, primarily in the nature of the loading.
Unfortunately, the loading effects of nuclear explosions cannot be pre-
cisely specified. The data commonly used and presented below are
empirical and based on a mixture of theoretical results for ideal conditions
and actual field observations. The methods of analysis used in this
chapter are generally approximate with regard to both loading and struc-
tural response. An approximate approach has been adopted, not only
to simplify this introductory presentation, but also because precise
methods are probably not justified in view of the uncertainties in the
loading. Where approximations have been made, they are generally con-
servative from a design viewpoint; i.e., the loading may be overestimated,
and the structural resistance underestimated. Thus the techniques pre-
sented are appropriate for defensive or design purposes, but may not be
proper for offensive purposes, e.g., military target-analysis.
276
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7.2 Loading Effects of Nuclear Explosionss’

Data are given below for the characteristics of the nuelear-blast pressures,
which provide the basis for the computation of forces on structural con-
figurations. The data are restricted to the effects ogcurring at or near
the ground surface and resulting from a surface burst of the weapon.
Blast phenomena for bursts appreciably above or below ground surface
are somewhat more complex.

When an explosion occurs, a circular shock front is propagated away
from the point of burst. At any instant of time the distribution of over-
pressure (the excess above atmospheric pressure) along a radial line is as
shown in Fig. 7.1a. The shock front travels with a velocity U/ and has a
peak pressure p., which decays behind the front as indicated. When the
shock front strikes an object such as a building, there is a “diffraction”
effect producing forces which result from the higher pressures due to
reflection of the wave on the front face of the object and also from the
time lag before the overpressure acts on the rear face. At the same time
the air behind the shock front is moving outward at high velocity, and
this “wind” produces drag forces on any objects encountered. Thus the
total loading consists of three parts: (1) the initial diffraction effect, (2)
the effects of the general overpressure p,, and (3) the drag loading. Ata
fixed point on the ground the variation of overpressure and dynamie pres-
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FIGURE 7.1 Pressure-pulse shapes.
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FIGURE 7.2 Owerpressure and dynamic pressure Vversus range.
1-MT weapon. (U.8. Department of Defense and Atomic Energy
Commission.¥)

sure with time is as indiecated in Fig: 7.1b. The dynamic pressure py %s
merely 1403, where p is the air density and » is the velocity c.jf tl.le air
particles. The drag pressure on an object in the path of the wind is t‘.he
dynamic pressure times the appropriate drag coefficient C.;.' The ne'zga.twe
overpressure phase, or suction, indicated in Fig. 7.1, is relatrfrely unimpor-
tant and may normally be ignored for structural-design purposes.
Structures belowground are subjected to the effects of the overpressure
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and to ground-transmitted shock, but obviously not to the diffraction
and drag effects,

The variations of the peak values of overpressure and dynamic pressure
with distance (or range) from the point of burst (ground zero) are given
in Fig. 7.2 for a 1-MT (megaton) weapon. For other values of yield
(i.e., weapon size), the range for a given pressure may be determined by

the following scaling law:
R (Y \#
G~ (‘y‘) @.1)

where ®, is the distance at which the pressure oceurs with a yield of Y,,
and ®; the distance for a yield of ¥,. Thus the ranges for a yield of
0.001 MT (1 kiloton) are exactly one-tenth of those given in Fig. 7.2 for
the same pressures.

The durations of the positive phases of overpressure and dynamic pres-
sure (Fig. 7.1b) versus range are given in Fig. 7.3 for a 1-MT yield.
These values may be scaled to other weapon yields by the following

relationship:
L4 Y \#
hL R S 2
laz (Yz) 72

where t4; and fs are the durations for the same overpressure (or dynamic
pressure) but different yields. Thus, to obtain the duration for a yield
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and range of ¥, and ®,;, we should first compute ®; for ¥, = 1 MT by
Eq. (7.1), read fs; on Fig. 7.3, and then compute ¢ by Eq. (7.2).

The velocity of the shock front (Fig. 7.1) depends only on the peak
overpressure, and is given by

U= U.(l + ???—;2)% | (7.30)

where U, is the velocity of sound, and p, is atmospheric pressure. Under
normal atmospheric conditions at sea level, this becomes

U= 1120(1 + 6”"’)}é fps (7.3b)
103

The rate of decay with time of the pressure at a point on the ground
depends upon the intensity of the peak pressure and the positive-phase
duration. This may be represented by the normalized curves of Fig. 7.4,
where ¢ iz the time after arrival of the shock front. Note that the
dynamie pressure decays more rapidly than does the overpressure.

When a shock front strikes a solid surface placed normal to the direc-
tion of shoeck travel, there is an instantaneous increase in pressure above
that of the shock front itself. This is in part due to the formation of a
reflected wave, which has the effect of doubling the overpressure, and, in
addition, to the sudden onslaught of dynamic pressure. The total pres-
sure, which is normally referred to as the reflected pressure, is given by

7po + 4P
r = 2 god = 77— —
p P ( p. + p..,)

_ 103 -+ 4p., .
or Pr = 2P, (——————103 T p.o) psi (7.4)

the latter being applicable at sea level under normal atmospheric condi-
tions. If the surface is inclined, i.e., the angle between the shock front
and the surface is not zero, the reflected pressure is decreased. However,
the decrease is not appreciable unless the angle mentioned is greater than
about 35° and Eq. (7.4) may be used for all smaller angles.

The reflection effect may be assumed to diminish linearly and to dis-
appear at the clearing time t., which is approximately

38,
-7

£ (7.5)

where U is given by Eq. (7.3), and 8. is either the height of the reflecting
surface aboveground or one-half the width, whichever is smaller. Thus,
for the rectangular building in Fig. 7.5a, S, would be the smaller of H or
B/2. After time ¢, the pressure on the surface is the overpressure plus
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{a)

PstCapa

Time FIQURE 7.5 Pressure pulse on front face of
(5] rectangular building.

the drag pressure, both of which decay as described previously. Thus
the complete pressure-time variation for a surface normal to the direction
of shock propagation is as shown in Fig. 7.5b.

The sides of the rectangular building shown in Fig. 7.5a are subjected
to the overpressure plus the drag pressure, which in this case would be
negative. The rear face is subject to the same combination of loading,
except that a certain time is required for the pressure to build up to the
steady-state condition. This time (after the shock front reaches the rear
face) may be approximated by 48./U, where S, and U are as defined in
connection with Eq. (7.5).

The total horizontal force on the building is merely the algebraic sum
of the front- and rear-wall forces. It is apparent that the presence of
openings in the walls would complicate the loading appreciably. How-
ever, if the function of the building is to protect the contents from blast
effects, it would normally be windowless.

7.3 Aboveground Rectangular Structares

To illustrate the principles of blasi-resistant design, we now consider in
some detail the design of the one-story, windowless building shown in

Fig. 7.6. The structure consists of a series of steel rigid frames supporting

an outer shell of reinforced concrete slabs. It is assumed that the build-
ing is sufficiently long so that each interior frame may be analyzed
independently of the rest of the structure.
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FIGURE 7.6 Example. Rectangular building,

Although the structure under consideration is about as simple as one
could imagine, it is in reality a complex dynamic system. It consists of &
group of elements, each with distributed mass, and hence infinite degrees
of freedom, all interacting with one another in a complicated manner.
Clearly, a rigorous solution is impractical. We shall apply the approxi-
mate methods developed in Chap. 5, considering each element of the total
structure to be an independent one-degree system. This approach will
be justified as the analysis develops. More precise methods than those
used below, even if possible, are probably not worthwhile, in view of the
inherent uncertainties in the blast loading.

The building is to be designed for a peak overpressure p.. of 20 psi and a
weapon yield ¥ of 0.5 MT. With the exception of the roof girder, all
elements will be permitted to undergo a plastic deformation corresponding
to a ductility ratio p of 5. This implies a moderate degree of damage, and
the building could thereafter be restored to usefulness by relatively minor
repairs, The girder will be designed for elastic response in order to
ensure the integrity of the frame (Sec. 7.3c). The dynamic material
strengths are given as follows:

Concrete compressive strength o), = 5200 psi
Reinforeement and structural steel yield strength a4, = 60,000 psi

The blast wave is considered to be traveling perpendicularly to the long
axis of the building, since this is the most severe condition for the frame.
a. Loading

Using Fig. 7.2, it is found that the range for a 1-MT weapon and 20 psi
overpressure is 7100 ft. By Eq. (7.1), the range for the weapon under
consideration is

®(0.5 MT) = 7100(0.5/1)" = 5650 ft

~ Also from Fig. 7.2, the peak dynamic pressure is

Pac = 8.1 psi
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FIGURE 7.7 Pressure-time curves. W = 0.5 MT,
Puo = 20 pai.

The durations of the overpressure and dynamic pressure for a 1-MT
weapon are provided by Fig. 7.3; ts, = 1.8 see, and {42 = 3.4 sec. For
the actual weapon yield, Eq. (7.2) gives

tap(0.5 MT) = 1.8(0.5/1)"* = 1.4 sec
taa(0.5 MT) = 3.4(0.5/1)** = 2.7 sec

The foregoing information and the normalized decay curves of Fig. 7.4
(for p.o = 20 psi) permit us to plot the actual pressure-time relationships
as shown in Fig. 7.7.

The velocity of the shock front is given by Eq. (7.3b):

6 X 20

U = 1120 (1 + 03

) = 1650 fps

The reflected pressure is given by Eq. (7.4):

_ 103 + 4 X 20\ _ .
Pr = 2X20 (w) = 59.5 ps1

The clearing time for this pressure, according to Eq. (7.5), is

_3X12
le = W = (.022 sec

The foregoing results represent the basic loading data, and we now
proceed to consider the individual elements.

b. Roof Slab

The roof will be designed as a two-way slab with sides of 20 and 16 ft.
The latter dimension is based on the assumption that support is provided
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by a steel spandrel spanning between columns. It might be economieal
to support the roof slab with the wall, in which case the transverse span
would be somewhat larger. It will be assumed that all four edges of the
two-way slab are fully restrained. For the edges along the roof girders,
this assumption ig justified by the fact that adjacent monolithic roof
panels are loaded simultaneousty. Along the wall edges the condition of
full restraint is approached if the two slabs are monolithie, since the wall
will be considerably thicker than the roof slab.

The total roof pregsure equals overpressure plus drag. The drag
coefficient for the roof of this configuration is approximately —0.4.
Therefore the initial peak pressure is

Pi = Pso — 0,41)&,, =20—-04 * 8.1 = 16.8 psi*

By combining the two decay curves of Fig. 7.7, the time variation of total
roof pressure is constructed as shown in Fig. 7.8. The rise time of the
loading equals the fransit time of the shock front across the slab span, or
i 16
by = Yl 1650 = {).01 sec
which is so small that it may be ignored. Actually, the pressure across
the roof slab is not uniformly distributed, but may be assumed to be so
because of the very short transit time.

For design purposes the load-time curve will be assumed triangular,
and as a first approximation, the initial slope of the actual pressure varia-
tion is used. As indicated in Fig. 7.8, this leads to an effective duration
tas of 0.48 sec. Furthermore, for a first-trial computation of required
slab strength, this rather long duration will be assumed infinite. Aeccord-
ing to Eq. (5.14), the required strength based on this assumption is

. 1 1 _ .
Required R, = F (m) = 16.8 (l—:rﬁm) = 18.7 psi

which corresponds to a total slab resistance of
Required R, = 18.7 X 16 % 20 X 144 = 860,000 1b
According to Table 5.5, the maximum resistance for an aspect ratio a/b
of 1844 = 0.8 is
R, = %[12(3151:;4 4+ Mpye) + 10.3(Mpp + Maw)]

* The roof pressure would be slightly greater if the blast were traveling in the long
direction of the building since the suction due to drag would be smaller. However, to
simplify the example, this condition is not considered here.
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FIGURE 7.8 Example. Roof-slab loading.

which, if we make the bending resistance equal at all points and in both
directions, becomes

Rn = Mell2(20Mr X 16) + 10.3(291- X 20)] = 49.89M»

where 3p is the bending resistance per unit of width. Therefore

Required R, _ 860,000
98 - 408

Required 9p = = 17,300 lb-it/ft

For bending strength we use the expression

M 2 PeT iy
» = pbdioe, (1 1.70'&)
which becomes

Mp = 560d>  lb-ft/ft

if we arbitrarily let the steel ratio p, = 0.01 and insert the material proper-
ties given. Thus the required effective thickness is obtained by

_(17,300V¢ .
d_(560) = 5.6 in.

which corresponds to a total slab thickness of about 7 in.

We must now refine the design by computing the response more exactly.
In Bec. 5.6¢ it was determined that, for a two-way slab having an aspect
ratio of 0.8, the effective stiffness is

430E1,

’CE = az
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Using the approximate expression for moment of inertia (Sec. 5.6a),

3
1, = b—gf (5500 + 0.083) — @ (5.5 X 0.01 + 0.083)
= 12.1 in.4/in.
we find the stiffness to be

b = 430(4 X 10%12.1
EB= (16 X 12)°

*

= 5.65 X 10° Ib/in.

The total mass of the slab is

_ 150 X 74, X 16 X 20

—3 o 2 i .
286 72.5 Ib-sec?/in

M,

The load-maas factor K ru for the slab is 0.54 in the plastic range and 0.69
in the elastic range (Table 5.5). It is estimated that a proper value for
this case (u = 5) is 0.57. Therefore

KiuM, ’0.57 X 72.5 _
T =2x Er 2r F65 X 10° 0.054 sec

We enter Fig. 2.24, the response chart for triangular pulses, with the
values

b 048 _ o By 187 _
T~ o052 T, 168 M

and read
g~ 4.0 :—"‘ =012 {, = 0.12 X 0.48 = 0.058 sec
d

The computed u value is sufficiently close to that desired (u = 5) since
only a very slight decrease in K, could be permitted. runhermore, at
the time of maximum response, the idealized load (Fig. 7.8) has not
departed significantly from the actual pressure-time curve. We t.;here-
fore conclude that the triangle selected to represent the load is sufficiently
accurate and that the7-in. slab is satisfactory.

c. Roof Girder

The design of the roof girder is complicated by the fact that this elemerft
must perform two functions: (1) it must support the roof slab; and (2) it
must perform its part of the frame action resisting the horizontal fox:cfes.
If the girder is forced into the plastic range by the vertical load, its ability
to restrain the columns may be impaired. It is therefore advisable tp
design the girder so as to remain elastic. Furthermore, since the hori-
zontal response causes plastic hinges in the columns at the girder con-
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nections, it 18 doubtful that the columns can provide effective moment
restraint, for the girder acting under vertical load. The girder will there-
fore be designed as though simply supported. This approach, ie.,
elastic design assuming simple supports, is conservative but prudent. A
more accurate method of design would have to consider horizontal and
vertical regponses simultaneously, which is not only cumbersome, but also
unreliable.

The vertical load on the girder is the sum of the dynamic reactions from
the adjacent roof-slab panels. TUsing the expression given for the short-
edge reaction in Table 5.5 and neglecting the decay in applied load, we
compute the slab reaction as

Va = 0.07F + 0.13R..
0.07(770,000) + 0.13(860,000)
166,000 1b

for one panel, or twice this amount for the total girder load. This value
is attained when the slab reaches its elastic limit. If we assume a sud-
denly applied constant load (Sec. 2.2c), the time at which the maximum
girder load is attained may be computed by

_Rm_Fl _
Ya =5 = ITE(I €08 wie)

where all quantities are for the slab, and {.; i3 the time desired. Using the
values computed for the slab in Sec. 7.3b,

Rn

20 1 — cos wi
or 1.11 =1 — cos 121¢.;
from which ta = 0.014 sec

Thus we may assume the total girder load to vary with time as shown in
Fig. 7.9¢, where the rise is approximated by a straight line and the decay
in overpressure 18 ignored. The load decreases suddenly at ¢ = 0.058 see,
the time of maximum slab response. It may be assumed that the span-
wise distribution of this load is triangular, as indicated in Fig. 7.9b, since
this is the type of edge reaction developed along the short edge of a two-
way slab in the plastic range.

The elastic {DLF ). for the load function shown in Fig. 7.9a is given
by Fig. 2.9 if, as will probably be the case, the maximum response occurs
before (.058 sec. Since it is expected that the girder natural period will
be much larger than the rise time, we take (DLF)max = 2 as a first trial.
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FIGURE 7.9 Example. Roof-girder loading.

Thus the estimated required strength including dead load is

Dynamie load 332,000 X 2 = 664,000 1b
Slab weight 7{2 X 150 X 16 X 8 = 11,200
Girder weight = 2,400
Total 677,600 1b

The slab weight included above is that of the tributary area included
within the 45° yield lines extending from the slab corners (Fig. 7.9¢).
Based on the triangular dead- and live-load distributions,

Required s = FL — 877,600 X 16 X 12

= 6§ -
6 5 = 21.7 X 10%in.-ib

For the given dynamic yield strength of 60,000 psi, the most economical
steel section providing this plastic bending strength is a 30WF116, for
which T = 4919 in.4,

In order ¢ make a more accurate analysis of the steel member selected
above, we must first compute the natural period. Following the pro-
cedure of SBec. 5.3, the load and mass factors are determined on the basis
of the static-load shape. For a simply supported beam with triangular



290 Introduction to Structural Dynamics

load, this shape is expressed by
= x b R 2y2
¢{x) T (5L 4x?)

The distributions of mass and load for this ecase are

x 2 $<£/
rmo p'—fpo 3

m =

where m, and p, are the intensities per unit length at midspan. The total
values of mass and load are

M.=Ysml  F.= laplL
and according to Sec. 5.2, the mass and load factors are expressed by
2 [ mio@)® do

2 [ plo@)l de
= Ft

Ky

K,

The numerical values given are obtained merely by evaluating the inte-
grals shown. The stiffness for the girder with triangular load distribu-
tion is

60K _ 60(30 X 10%)4919

= 6 1 .
k= I = {16 X 12)° 1.25 X 108 1b/in

Finally, the natural period is

0.70 X 13,600/386 _ 0oy cee

K—MMt = 2r

T =2\ 0.81 X 1.95 X 10°

To determine the maximum response, we enter Fig. 2.9 with
t./T = 0.014/0.031 = 0.45 and read (DLF)ya = 1.70. This is some-
what less than the value of 2.0 originally assumed, and the girder is some-
what overdesigned. However, a second cycle need not be demonstrated
here.

We should now reconsider some of the basic assumptions made in
the slab and girder design. The time of maximum girder response
may be determined by reading on Fig. 2.9 t./t, = 1.63, from which
tm = 1.63 X 0.014 = 0.023 sec. Thus the use of Fig. 2.9 is valid, sinee
tn < 0,058, the time of maximum slab response at which the girder load
decreases (Fig. 7.9a). Furthermore, the decay in slab reaction due to the
decrease of overpressure is not appreciable in the time range of interest.
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Also in question is the assumption that the slab and girder may be
treated as independent one-degree systems. This may be investigated by
comparing the deflection of the two elements. The dynamic girder
deflection is given by

o Fi _ 332,000 .
Ymax = (DLF)max T 1.70 X m = (.45 in.
and the maximum slab deflection by
Bm 860,000 X 4.0 = 6.1in.

Ymex = 2 ¥ T 585 X 10F

It is apparent that the girder deflection is too small to have an appre-
ciable effect on the slab response, and hence on the applied girder load
itself. Thus it is permissible to treat the two elements separately.

d. Wall Slab

The wall of the building will be considered to be a one-way, simply sup-
ported slab. It is presumably supported at the bottom by a wall footing,
which is assumed to lack the rigidity necessary to provide rotational
restraint, and at the top by the roof slab, which has considerably less
thickness, and hence insufficient stiffness and strength to restrain the
wall appreciably. The slab could also be supported by the vertical steel
columns, thus becoming & two-way slab, but this arrangement has little
advantage. Both exterior walls would of course be designed for face-on
blast exposure since the explosion could oceur on either side.

In Bec. 7.3, the reflected pressure was computed to be 59.5 psi and the
clearing time for this pressure 0.022 sec. The drag coefficient for the
front faee is about 0.9, and hence the total pressure after reflection is
ps + 0.9ps. The total pressure-time curve is therefore as shown in
Fig. 7.10. Since the natural period of the wall, and hence the time of
response, will be short, the loading may be considered as a first approxi-
mation to be the single triangle defined by the initial peak of 59.5 psi and
the duration of 0.039 sec (Fig. 7.10). This will be correct if the time of
maximum response is less than 0.022 sec.

At this point an estimate must be made of the slab natural period.
Suppose a value of 0.03 sec is assumed so that £s/T = 1.3, where {; is
0.039 sec. Then, by Fig. 2.24, the response chart for triangular load-
time functions, we obtain, for u = 5,

Required B _ 075
Fy

Required B, = 0.75 X 59.5 = 44.6 psi
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FIGURE 7.10 Example. Pressure-time curve for wall
glab.

Considering a 1-in. strip of the simply supported slab, we find

R.L? _ 446 X (12 X 12)*

Required 9%, = 3 3

= 116,000 1b-in. /in.

As in the roof slab design, the required slab depth is given by (if we
take p, = 0.01)

Required d = (

Required WzY\*¢ .
T) = 14.4 n.

which corresponds to a total slab thickness of about 16 in. Making use
of Table 5.1 and the empirical expression for moment of inertia, the
natural period is computed as follows:

3
I = %d“ (5.500 + 0.083) = (1_)(124_'4) (5.5 X 0.01 + 0.083)

= 206 in.*/in.
__ 384EI, _ 384(4 X 10%206 _ : . .
k= 3 AR T U S V) LI 21,200 1b/in. per inch of width,

or 254,000 1b/in. per foot of width
M, = 18{5 X 150 X 12 X Y446 = 6.21 Ib-sec?/in. per foot of width

Krw =068
o KM, _, 068 X621 _
T=2x % = 2x W = 0.026 sec
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We now reenter Fig. 2.24 with
(4 0.039 m

to obtain g = 5.6 and t./ta = 0.70. From the latter we compute
tm = 0.70 X 0.089 = 0.027, which is greater than 0.022, and hence the
idealized loading which departed from the actual value at the latter time
is not valid (Fig. 7.10)

The slab should be strengthened to reduce s below the design value of 5.
This should be done before revising the idealized load because t, will be
affected by a change in strength. For example, if the effective slab
thickness were increased to 15.25 in. (total thickness = 16.5 in.) and the
procedure exactly as given above repeated, we should find R, = 50 psi,
= 4.2, and i, = 0.023 see. The latter time is only slightly greater than
0.022 sec, and the idealized loading is considered to be satisfactory. If
t. were still appreciably larger than 0.022, a possible procedure would be
to adopt two triangles for the idealized load function and to compute » by
the use of Eq. (5.13) in Sec. 5.5a.

In the above analysis the effect of the horizontal frame motion on the
wali-slab response has been ignored. The justification for this simplified
approach will be considered after the frame has been designed.

e. Rigid Frame

The total horizontal force on the steel frame is the algebraic sum of the
front- and rear-wall reactions. That for the front wall is given by the
expression for dynamic reaction in Table 5.1,

V = 038R, + 0.12F

where F ig the external wall pressure (Fig. 7.10) multiplied by the tribu-
tary wall area (20 X 12 ft), and R., is 50 psi (see above), or 1.73 X'10%1b
for one frame. Since it is probably short compared with the natural
period of the frame, the time required to develop this reaction may be
ignored. After the maximum wall-slab response (t» = 0.023 sec), it
may be sssumed that the wall reaction is merely one-half the applied
loand F. The residual elastic wall vibration after 0.023 sec actually
results in a variation about this mean (14F), but this has little effect on
total frame response because it occurs with relative rapidity. Based on
these idealizations, the force applied to the frame by the front wall is as
shown in Fig. 7.11a.
The total pressure on the rear wall is

p = ps — 0.5pa
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FiGURE 7.11 Example. Horizontal loading on building
frame.

where —10.5 is the drag coefficient. This begins to develop when the shock
front reaches the rear of the building (¢ = {/U = 20/1650 = 0.012 sec)
and has a rise time equal to 4S,/U = 4 X 12/1650 = 0.029 sec. Under
this loading the wall would remain elastic, and if the vibration is ignored,
the reaction on the frame is

Li(p X 144)(12 X 20) 1b

which is also plotied in Fig. 7.11a.

The net horizontal foree on one frame is merely the difference between
the two wall reactions. This is plotted in Fig. 7.11b. As a first approxi-
mation this load function is idealized by the dashed line, which is defined
by Fi = 1000 kips and #{; = 0.05 sec. Therefore, assuming that the
frame period will be about 0.08 sec, we estimate, with the aid of Fig. 2.24,
that the required strength should be approximately one-half of the initial
load peak if u is to be 5.
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On the above basis the required resistance of the frame to horizontal
load is approximately

R.. = 14F, = 500 kips

If the unbraced height of the columns is 9 ft, the required bending strength
is -
_ Rah _ 500 X 9

My = )

= 1125 kip-ft

Using the given yield strength of 60,000 psi, it is found that an 18WF105
steel section (I = 1852 in.f) provides the required plastic bending
morment. Note that, in the above calculation, the effect of axial column
stress has been ignored. This is permissible because the amount of
direct stress is not sufficient to reduce appreciably the column bending
strength. However, a more refined analysis would take this effect into
consideration.

In order to check the above preliminary column design, we first com-
pute the natural period based upon effective values of stiffness and mass
(see Sec. 5.3¢). The stiffness is merely the inverse of the horizontal
deflection due to a unit horizontal load at the top of the frame. With
the moments of inertia of the girder and columns previously determined,
conventional elastic analysis leads to the expression

184E1,
=%

where I. is the column moment of inertia, and A is the effective column
length (9 ft). Thus

, — 18:4(30 X 10%)1852
T T OXR)e

= 810 kips/in.

The effective mass [Eq. (5.6)] is that at roof level plus one-third of the
wall masses.

Roof slab 742 X 150 X 20 X 17.25 = 30,200 1b
Roof girder 116 X 17.25 = 2,000
Walls 14 X 2 X 16.5/12 X 150 X 12 X 20 = 33,000
Columns 14 X2X 105 X90= 600
Total weight 65,800 Ib

M, = 65,800/386 = 170 lb-sec?/in.

The natural period is therefore

_ M, 170 _
T = %JT = 2'“' STO;O(T'O = 0.091 Bsec
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We now reenter Fig. 2.24 with the parameters

ta _ 0.050 R.. _
T = 6001 — 0.55 and 7o 0.5
and read p=43 and ;—"‘ = 1.2
o

Therefore tw = 1.2 X 0.050 = 0.060 sec. Referring back to Fig. 7.115,
we may now make a better load approximation. The proper ecriterion is
that the areas under the actual and idealized load functions should be
approximately equal up to time t,. On this basis it appears that a better
approximation for the idealized load would be F, = 950 kips and
ta = 0.058 sec. For this loading the revised parameters are

ta _ 0.058 R

e Y = = = 500 =
T = 5.001 0.64 and F, %450 = 0.53

and we obtain from Fig. 2.24

p=49
Im _
5—1.1

tn = 1.1 X 0.058 = 0.064 sec

The load approximation now sppears reasonable, and we conclude that
the duotility ratio is indeed about 5, the desired value. Therefore the
18WF105 column section is satisfactory.

The method of frame analysis given above is approximate in several
respects, and it may be desirable to make a final design based on more
exact procedures.’” This would have to be executed by numerical
analysis, because there are several time-varying effects and the procedure
might differ from the above analysis in the following respeets: (1) the
actual load function rather than the triangular-load idealization would be
used; (2) the effect of direct stress on the column bending strength would
be included; and (3) the effect of the vertical load acting on the horizontal
deflection might be considered. The last would take into account the
-eccentricity of the vertical load, the effect of which is to reduce the frame
resistance by Fy/h, where F is the total vertical load and y is the hori-
zontal deflection. In both procedures 2 and 3, the vertical column loads
should be based on the dynamic reactions of the roof girder. Thus, even
in the plastic range, the frame resistance would be recomputed at each
time station of the numerical analysis.

It will be recalled that the wall slab was analyzed as though on rigid
supports; i.e., the frame motion was ignored. This leads to only slight
error because, as is now known, the frame responds more slowly and the
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inertia forces on the wall due to frame motion are small compared with
those due to distortion of the wall panel itself. As discussed in Sec. 5.7,
the alternative is to consider the two elements as coupled systems.

If the transverse rigid frame of the current example were to be designed
in reinforced concrete rather than steel, the method of dynamiec analysis
would not differ from that given above. However, an important differ-
ence in column design results from the fact that the effect of axial com-
pression on bending strength is significant in the case of reinforced con-
crete and should be included. The vertical roof load may cause an
appreciable increase in column bending strength, and to ignore this fact
is unduly conservative. If, as above, standard response charts are being
used, some average value of column compression must be assumed to
remain constant during the response. If this is considered too crude, the
frame must be analyzed by numerical step-by-step methods.

For higher design overpressures, rigid frames of either steel or rein-
forced conerete are not economical, and the designer may resort to the use
of reinforced concrete shear walls in transverse planes, In addition to
the fact that the space within the building is obstrueted, shear walls have
the disadvantage (from the viewpoint of required strength) of low duc-
tility capacity and great stiffness. As a result, the lateral natural period
of the building is small and the design 1 value must be set at a relatively
low level. Both of these facts tend to increase the required strength.
This is of course compensated for by the great inherent shear capacity of
reinforced walls. 4

7.4 Aboveground Arches and Domes

The behavior of arches and domes when subjected to the effects of nuclear
blast is obviously a complex phenomenon. The loading, both with
respect to spatial distribution and time variation, is difficult to determine
because of the curvature of the exposed surfaces. In addition, the stress
condition is more complicated than for other types of structural elements,
such as beams or frames. Fairly exact methods of analysis are possible,
but these are not practical for design purposes. We shall therefore limit
ourselves to approximate procedures. The scope of the following dis-
cussion is restricted to circular arches and spherical domes, both of
reinforced conerete.

The loading may be considered to consist of three parts: (1) the general
overpressure, which by itself produces uniform compression in the arch or
dome, (2) the reflected pressure, which is largest at the windward base of
the structure where the surface is most nearly vertical, and (3) the drag
pressures, which are generally positive on the windward side and negative
on the opposite side. The latter two components are unsymmetrical and
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FIGURE 7.12 Idealized modal loads for arches and domes.

produce bending in the arch and nonuniform membrane stresses in the
dome.

It has been suggested?®® that the total load could be represented by two
components: (1) a “compression” mode, consisting of a uniform radial
pressure, and (2) a “flexural” mode, consisting of an antisymmetrical but
uniformly distributed pressure. These are shown in Fig. 7.12. The
load-time funetion and magnitude for the eompression mode are taken to
be the same as the overpressure, except that there is a finite rise time
which is conservatively estimated to be one-half the transit time of the
shock front, i.e., one-half the time required for the front to cross the
structure. The flexural mode is given a peak-pressure intensity of

Prm = Yip, domes

or Prm = ('0.5 + 1%) Pew  arches (7.6)

where A is one-half the central angle of the arch or dome, and p, is the
maximum reflected pressure on the dome. The latter occurs at the base,
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P

FIGURE 7.13 Circular ring under radial pressure.

and is given by Eq. (7.4), provided that A > 55°. These peak values
are attained after about one-half the transit time (i.e., the shock front has
reached the center of the structure). The flexural mode pressure then
decreases until at 2.5 transit times and thereafter it is equal to (A/x)psCl,
where pq is the dynamic pressure and €y is the drag coefficient. The
latter coefficient is approximately 0.4 for p,, < 50 psi and 1.0 for Peo > 15
psi. This change in Cs results from the fact that the drag on curved
objects displays a Reynolds-number effect. Between the two pressure
levels given, C's may be assumed to vary linearly.

The load components given above are obviously rather crude approxi-
mations, but are believed to be conservative and sufficiently accurate for
design purposes. It should be apparent that one reason for selecting
these distributions (symmetrical and antisymmetrical) was that internal
stresses may be readily computed for these cases. This method of load
definition should not be used for small weapons, say, ¥ < 0.1 MT.

Having defined the load in the manner outlined above, the structure
may be assumed to have two degrees of freedom, one mode corresponding
to each of the two modal loads. The dynamic analysis may then be
executed, using any of the methods previously developed.

a. Reinforced Concrete Barrel Arches

The compression mode of an arch corresponds to a econdition of uniform
axial strain and is therefore analogous to a circular ring under uniform

radial pressure as in Fig. 7.13. The natural period may be derived as
follows:

pr

Ring strain = D.E.

where r and D, are the radius and thickness of the ring, and E, is the
modulus of elasticity of concrete. Reinforcing steel has, in most cases, a
negligible effect on the strain. The radial deflection is

- b
Y= D.E,
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FIGURE 7.14 Flexural mode distortion of
arch,

and the stiffness, defined as total radial load per unit width divided by
radial deflection, is
k= 2xrp _ 2xD.E.-
prt/D.E, r
The total mass per unit width is given by

_ 2xrD.p
g

where p is the concrete density. The natural period of the compression

mode is therefore
— /M — pr
T.= 2» . = 27 \/ oF.

and if we take p = 144 1b/ft* and E. = 4 X 10° psi, this becomes

M

T, = Tgi”ﬁ sec (7.1

where r is the radius in feet.

As seen in Fig. 7.12, the rise time for the compression mode load is
L/2U. For the overpressures of interest in connection with aboveground
arches (say, p.. < 100 psi) and the internal angles usually encountered,
this rise time is of about the same magnitude as the natural period T..
Such being the case, the dynamic increase in load effect is generally small
(Fig. 2.9), or in other words, the loading is only slightly more severe than a
static load of the same magnitude. Furthermore, in the case of an above-
ground arch, the mode of failure is one of excessive distortion due to
flexure, and the major effect of the compressive force is to modify the
bending resistance of the reinforced concrete cross section. This effect is
significant throughout the time of flexural response, and therefore we seek,
not the maximum compressive stress, but an average over this time, which
is essentially the mean, or static, value. For both of these reasons, the
compression in the arch may be approximated as a constant with a value
equal to that corresponding to p,.. In other words,

Pe = Pu? (7-8)

where P, is the force per unit width of arch.
In the flexural mode the distortion is as shown in Fig. 7.14. Note that
this is the fundamental flexural mode, which is the only mode of signifi-
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mode loading.

cance in the response due to the assumed flexural mode loading (Fig.
7.12). For this mode the natural period may be computed as that for a
beam having a span equal to Ar, or half the arch are, modified by a factor
to take into account the lateral deflection of the crown. The beam
natural period for the case of hinged arch supports may be defined by the
empirical expression

_ {Ar)?

" 300,000d(p, + 0.015)%

where d is the effective depth, and p, the steel ratio in the tension face of
the cross section. This expression is consistent with the approximate
values of effective moment of inertia for reinforced concrete sections used
previously (Sec. 5.6a). The modifying factor for translation of the crown
is approximately

T

(r/A) + 1.5
(v/A)* =~ 1
and therefore the approximate natural period of the flexural mode is
2
T, = (x/A) + 1.5 (Ar) sec (7.9)

(x/A)? — 1 300,0004(p, + 0.015)*

where both r and d are in inches.

In the flexural-mode load-time function (Fig. 7.12) the rige time L/2U
is generally small compared with 7, and may be ignored. Furthermore,
we may replace the decaying drag effect by an equivalent straight line
(selected so s to be compatible with the time of maximum response as in
Sec. 7.3b), so that the total load may be represented by two triangles,
as in Fig. 7.15. Having accomplished this simplification, inelastic
response may be determined by the use of Eq. (5.13), which combines
the effects of two triangular functions.
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FIGURE 7.16 Interaction curve for rectangular reinforced con-
crete section in direct stress and bending.

The flexural resistance of the arch may, like the natural period, be based
upon a beam of span Ar, modified to take into account translation of the
arch crown. If the arch has hinged bases, the resistance per unit arc
length is given by

gm P (r/ A)z -1

fons = G a/my (7.10)
where Mp is the ultimate bending strength of the concrete cross section.
The effect of axial compression on bending strength is significant and, in
most cases, results in an increase of flexural resistance. The relationship
between ultimate bending strength and compression is well known,® and
an interaction eurve for one set of parameters is shown in Fig. 7.16. For
this figure it has been assumed that the curve for the given dynamic
material properties is the same as that for the corresponding static
properties (s, = 4,000 psi, o, = 40,000 psi).

The approximate methods of analysis outlined above are now applied
to the following example. We desire to determine the maximum flexural
response in terms of the ductility ratio p of the reinforced concrete arch
shown in Fig. 7.17, which is subjected to a peak overpressure of 50 psi
from a 1-MT weapon. Design would consist of a series of such analyses
for various section properties converging on those which result in a
desired u.
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rigure 7.17 Example. Reinforced concrete barrel
arch.

By Eq. (7.8), the arch compression per inch of width is
P. = p.r = 50 X 30 X 12 = 18,000 lb/in.
The ultimate compressive strength for the given parameters is

P. = (0.85¢/, + 1.8p,04,)D.
(0.85 X 5200 + 1.8 X 0.01 X 52,000)33
176,000 1b/in.

Therefore I% = 0.102

Using the interaction eurve in Fig. 7.16, we obtain

Ry

Roa 1.64

where R.... i8 the flexural resistance for P, = 0.
By Eq. (7.6), the peak value of flexural load is

Pim = (0.5 + %) Peo = 50 psi

The shock-front veloeity is given by Eq. (7.3b):

— ﬁpw & - f
U = 1120 (1 + 103) 2220 ips

and therefore (Fig. 7.15)

5L 5 60
| R — | . 5
tn 3 7 2)( 5990 0.0675 sec
Referring to Fig. 7.2, we find that the given overpressure oceurs at a
range of 4800 ft and that the corresponding peak dynamic pressure
(pa) is 40 psi.  From Fig. 7.3, we determine the duration of the dynamic
pressure [y to be 3.15 sec. Thus the initial value of the dynamic-pressure
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arch.

portion of the flexural mode loading (Fig. 7.15) is
A .
. PaCa = 8.0 psi

taking Cs at 0.4. Based on the above data and the appropriate decay
curve of Fig. 7.4b, the complete load-time function for the flexural mode
is a8 shown in Fig. 7.18.

The bending resistance of the cross section without axial compression
by the equation given in Fig. 7.16, with d = 30 in., is 440,000 Ib-in. per
inch of arch width. By Eq. (7.10), the corresponding flexural resistance
is

_ 8 X 440,000 (2)2—1 _ .
Rm,‘u = [('_/2) X 360]2 (2)2 = 8.3 psi

It was found previously that, because of P,, this is increased by ‘1.64, and
therefore the actual resistance is

R.; = 83 X 1.64 = 13.6 psi

As formulated here, the resistance is given in terms of external pressure.
Evaluating Eq. (7.9), we obtain the natural period of the fiexural mode,

p, - @415 [(r/2) X 360}
7T @1 300,000 X 30(0.01 + 0.015)%

= 0.41 seec

At this point we must estimate the effective duration of the dynamic-
pressure load component (A/x)psCas. It is expected that the maximum
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response will occur in the vicinity of t. = 147", and on this basis it is
estimatec that a proper value of effective duration, ¢, would be 0.35 gec
(Fig. 7.18).

We now determine the maximum response by the approximate equation
(5.18): .

(£2), e + (&), 000 =1

where the first term relates to the triangle defined by p/m — (A/7)paCa
and f4;, and the second term to that defined by (A/x)paCs and tz;. For
the current problem we have the following data:

F\ _ 42 t, 0.0675 _
("RI.)I “ms=3 7,7 o4 018
Fi\ _ 8 B fa, _ 0.35
(R;)2 = 135= 050 =g - 086

We now solve Eq. (5.13) for p, using a trisl-and-error procedure. For an
assumed u, C1(p) and Cy(p) are read from Fig. 2.24a, each being the value
of R./F, corresponding to that u and the appropriate {z/T;. The caleu-
lations are given in the following table:

4
HUd | G | Ol | FY/RNC) | F/RaaC) | 2
5 0.17 0.61 0.53 0.36 0.89
4 0.18 0.67 0.56 0.39 0.95
3 0.21 0.75 0.65 0.44 1.09

It is apparent that Eq. (5:13) is satisfied by & u value slightly less than
4. In other words, the maximum deflection of the arch in the fiexural
mode is about four times that corresponding to the formation of plastic
hinges at or near the quarter points of the arch.

For very flat arches it may be necessary to consider buckling due to the
compression mode loading. However, in most cases, flexure is the
important consideration, and the compressive force is not large enough to
cause an unstable condition, :

If the arch were a rib supporting a eylindrical surface, the above pro-
cedure would be modified in an obvious manner to account for the increase
in load relative to the rib width.

The foregoing procedure is approximate in several respects. If the
analyst desires a more precise solution, or if the response is completely
elastic, a numerical method of analysis should be used. This can be
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accomplished using only the system parameters computed above and the
nondimensional equation of motion given in Sec. 2.84.
R RO
where 1 = y/ya
£ =1t/T;
Ff() = load-time function for flexural mode

The preceding equation applies in the elastic range only, and beyond the
elastic limit it should be changed to

1, F
mﬂ-l‘l =R—.,,,r'f(£)

The maximum value of 5 so obtained is, by definition, . If, in addition,
it is desired to take into account the variation in P, and the consequent
effect on R, the above equations may be rewritten as

4%_2 i+ e=jf&  elastic range

and L + RTM = f(£) plastic range
1

i
where ¢ is ¢/4., and v, is the flexural mode deflection due to the static
application of 1. In each step of the numerical analysis R, in the last
equation may be determined for the value of P, = p.r oceurring at that
time.

b. Reinforced Concrete Spherical Domes

Spherical domes may be treated in a manner similar to that given for
arches. In this case, however, the so-called flexural mode loading does
not produce bending, since it is resisted by membrane stresses.

The natural period in the corpression mode may be derived following
the procedure given above for arches. Noting that the radial deflection
for a spherical shell under uniform pressure is

N
y= ) De Ec (1 ")
where v is Poisson’s ratio, we find that the natural period is approximately
expressed by
r
~ 2500
where r is the radius in feet. The natural period in the flexural mode may
be taken approximately as the same as that for the compression mode.
The natural periods for a dome are extremely short, and for the pressure
levels (p.. < 100 psi) and weapon yields (¥ > 0.1 MT) considered here,

T. sec
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the rise times for both modal loads (Fig. 7.12) are never appreciably less
than the periods. Therefore the dynamic increase in the load effect is
generally small. Furthermore, the decay of the peak loads is relatively
slow, which indicates that the required strength is not very sensitive to
the design-deflection eriterion; i.e., a resistance slightly greater than the
peak load would result in elastic behavior, while a slightly smaller resist-
ance would result in very large deflection. For this reason it is suffi-
ciently accurate for design purposes to consider both load components to
be statically applied, regardless of the amount of shell deformation to be
permitted. Thus the ultimate membrane strength is made equal to the
internal forces corresponding to the maximum applied pressures.
The maximum membrane force due to the compression mode load is

P. = Yp,r b per unit width

where P, is uniform throughout the shell and oceurs in all directions. For
the antisyrnmetrical flexural mode, the maximum local compression
which oceurs on the windward side is approximately given by

P; = 34prar = 34pa b per unit width

the last substitution being made according to Eq. (7.6). The ultimate
strength is equal to

P, = (0.850;, + 1.8p,04,)D. Ib/in.

where p, is the steel ratio for each face and in each of two perpendicular
directions. The modal membrane stresses are additive, and hence the
design equation is

P, +P;, =P,
or Yper' + 34per = (0.850¢), + 1.8p,04,)D, {7.11)

Note that, even though the loads are considered to be applied statically,
the dynamic material strengths may be used.

To illustrate the above, we shall determine the required thickness of a
dome for the following parameters:

Peo = 50 psi r = 30ft p. = 0.005
o = 5200 psi  oq, = 52,000 psi

By Eq. (7.4), the reflected pressure is 198 psi, and using Eq. (7.11), we
obtain

L5(50)(360) + 24(198)(360) = (0.85 X 5200 + 1.8 X 0.005 X 52,000)D,
or D. =128 in.
which is the required total thickness for the shell.
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FIGURE 7.19 Shallow-buried structures.

In addition to the membrane stresses considered above, there is some
bending resulting from boundary restraints or load irregularities. How-
ever, these wpuld normally not cause failure, and excessive cracking may

be prevented by maintaining at least a nominal amount of reinforcement
in each face.

7.5 Belowground Structures

Aboveground protective construetion is economical only up to overpres-
sures ranging between 50 and 100 psi, the exact limit depending upon the
type and function of the structure. For higher design overpressures, such
structures are placed belowground. In this way it is possible to provide
protection against very high overpressures, e.g., 1000 psi or even greater,

Most of the problems peculiar to the design of underground structures
are in the realm of soil mechanics or wave propagation, and not in the area.
of structural dynamies ag treated in this text. OQur discussion will there-
fore be limited to some general observations regarding the dynamic behav-
ior of underground structures.

If the structure is shallow-buried, i.e., if the earth just covers the top of
the structure as in Fig. 7.19, the primary effect of the burial is to eliminate
the reflection and drag components of loading. In the case of a boxlike
structure, the design of the roof ig not appreciably different from that for
the aboveground situation. There is, of course, no suction due to drag,
and the earth cover increases both the dead load and the natural period of
the roof slab or beam. None of these factors is normally of great impor-
tance. However, the vertical walls of the rectangular strueture are sub-
jected to much smaller loads than in the aboveground case. First, the
very important reflected pressure is eliminated, and second, the pressure
normal to the wall is only about one-fourth to one-half of the overpressure
(P.0), depending upon the type of soil. Finally, there is no appreciable
horizontal loading on the transverse frames of the structure because, if the
backfill is properly placed and compacted, very little distortion of this
type is possible.

Arches and domes which are shallow-buried are particularly resistant
to blast effects. The behavior in the compression mode is not appre-
ciably different from that in the aboveground case, except that the natural
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period is lengthened by the weight of soil. However, the compression
mode is not severe, because arch or dome structures are ideally suited to
resist this type of loading. The important point is that the flexural mode
loading to which they are not so resistant is greatly reduced by the burial.
The only flexural load present is that due to transit of the shock over the
structure. The time function for this load may be considered to be an
izsosceles triangle with a peak value of Y4p,, and a duration equal to the
transit time. This is much less severe than that used for aboveground
structures.

If the structure is deeply buried, i.e., if the earth cover is equal to or
greater than about half the width, there are three major effects in addition
to those mentioned for the shallow-buried case: (1} the overpressure is
attenuated with depth; i.e., the pressure at the structure is less than the
surface overpressure p,.; {2) the duration of the positive phase is increased ;
and (3) the soil acting as an arch above the structure takes an appreciable
part of the vertical load. The last is extremely important and can perhaps
be best visualized in the case of an arch structure, where, if properly
compacted, the soil above the structure acts as an arch itself, thus relieving
the structure of load. For deeply buried arches and domes, the flexural
mode may be ignored, since the surrounding soil prevents significant dis-
tortion of this sort. The reduction in compression mode loading, together
with the elimination of the flexural mode, makes deeply buried arches and
domes extremely blast-resistant.

The highest level of protection is provided by rock tunnels deep below
the surface. Such protection is limited only by the strength of the rock
and its ability to prevent elosure of the cavity. At somewhat lower pres-
gure levels, spalling of the tunnel walls may occur, but damage can be
minimized by rock bolting and by placing a liner against the tunnel wall.
Structures are sometimes built within eavities, and these need be designed
only to withstand the ground motion resulting from the blast, as discussed
in the next section.

7.6 Ground Motions

A nuclear explosion causes sizable motions of the ground, which may be
important in the design of hardened facilities. If the structure itself has
been designed to withstand overpressure (such as the examples in previous
sections), it is unlikely that ground shock would be an important consid-
eration, and is often ignored. However, for structural elements within
but not part of a protective enclosure, ground shock may be the only
blast effect. These elements would include isolated floors or pieces of
equipment supported on the ground within the enclosure, as well as
structures within tunnels belowground. Facilities involving electronic
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equipment are often more vulnerable to ground shock than to other blast
effects. )

The ground motion may be considered to consist of two parts: (1) the
air-induced shock resulting from the application of overpressure to the
ground surface, and (2) the shock transmitted directly through the ground
from a burst at or below the surface. Only the first part is considered
herein, since this is usually the more severe.

The actual motion can at best be only approximately predicted. It
depends on the properties of the soil, not only at the point of interest, but
at points far removed, particularly in the region below the point under
consideration. Since the earth is not a homogeneous medium, the phe-
nomena become quite complex. The expressions given below, which have
been taken from Ref. 38, are estimates of the peak air-induced effects
believed to be reasonable for typical econditions.

The maximum vertical displacement at the ground surface is divided
into two parts: (1) the elastic, or transient, displacement (y,..), and (2) the
plastic, or permanent, displacement (y..,). These may be taken as

follows:
_ o P (1000) p
Yeoe = 10 (100) ( . )Y in. (7.12)
o — 40 f1000\? .
Yaep = pT* ( P ) mn. (7.13)

where p., = peak overpressure at surface, psi

¢. = seismic velocity of soil, fps

Y = weapon yield, MT
The seismic velocity varies with type of soil from about 1000 fps for a
soft material to about 2000 for a sandy silt and to 12,000 or higher for
rock. The maximum horizontal displacements may be taken as one-third
of the vertical displacements given above.

The maximum vertical velocity at the surface is approximated by

Yoo = 50 (f&a) (1200) in. /sec (7.14)

and the peak horizontal velocity may be taken as two-thirds of this value.
Both the maximum vertical and horizontal accelerations are given by

o = 150 (1p00 (5_2@) in units of g’s (7.15)

However, it is recommended that ¢, in this equation be taken as 2000
fps for all soils having greater seismic velocities.
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FIGURE 7.20 Idealized response spectrum for vertical ground mqtion.
W = 0.5 MT, p,, = 150 psi, ¢, = 2000 fps.

At depths below the surface, the air-induced ground motion is of course
less severe than the values given above. At moderate depths (say, less
than 100 ft), the displacement and velocity are not appreciably different,
but the peak acceleration is greatly reduced. Reference 38 provides
procedures for estimating these below-surface values.

Equations (7.12) to (7.15) provide peak values of displacement, velocity,
and aceeleration. It is extremely difficult to predict the actual time func-
tion of the motion. For this reason the response-spectrum approach as
discussed in Sec. 6.4 in connection with earthquake design is most useful.
It has been suggested3® that an approximate spectrum for design purposes
may be constructed on a log-log plot (Fig. 6.9) as follows: (1) a straight
line of constant displacement equal to the total maximum ground dis-
placement, (2) a straight line of constant spectral velocity equal to 1.5
times the maximum ground velocity, and (3) a straight line of constant
accelerstion equal to the maximum ground acceleration. A response
spectrum for vertical motion constructed on this basis is shown in Fig.
7.20. ‘This is for the surface burst of a 0.5-MT weapon at a range such
that p., = 150 psi. The seismic velocity has been taken as 2000 fps, and
the peak values for the ground motion as given by the expressions above
are

Yo = 5.6 In. 0 = 37.5 in./gec Ho = 112¢
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The three lines specified above are therefore given, respectively, by the
equations

L 315X 15 1129
Umax = .6 in. Umax = 21rf Umax = (—27—_]")3

where tmax is thie maximum displacement relative to the ground. For any
given frequency of the responding system f, Fig. 7.20 provides the max-
imum relative displacement. The absolute acceleration of the mass of
the responding system is given by

gmnx = (%f) Eumax

To illustrate application of the above, we consider the problem of shock-
mounting & piece of sensitive equipment. Usually the equipment may be
considered to be a rigid mass which can be protected from the ground
shock by supporting it on springs as shown in Fig. 7.21. Suppose that
the weight is 1000 1b and that the equipment would be damaged if the
vertical acceleration, up or down, not including the acceleration of gravity,
exceeded 3g. Our problem is to design the supporting springs. Only
vertical motion will be considered. Protection must also be provided
against horizontal motion, but the two motions are generally uncoupled.

The criterion of §max = 3g can be expressed by the equation

3g 294 .

tows = onfyt =

which, when constructed on the log-log plot, is the straight dashed line in
Fig. 7.20. To the right of the intersection of this line with the response
spectrum, the acceleration of the mass would be greater than 3g. Since
the intersection occurs at f = 3.3 cps, we conclude that the design criterion
will be satisfied if the frequency is less than this amount. Since the
frequency of the mass on springs is given by

= 5
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the requirement for the design is that the combined spring constant for all
supporting springs must be less than (2#f)*M, which, for this example,
means that

k < (2r)%(3.3)2(1000/386) = 1110 lb/in.

If this upper limit were actually selected, the motion of the mass relative
te the support as given by Fig. 7.20 would be

" Umax = 2.7 in.

and sufficient clearance to permit this vertical motion must be provided.
A smaller value of k would result in reduced acceleration of the mass but
larger relative displacement. '

If the equipment were mounted on the enclosing structure rather than
on the ground, the support motion, for which the shock mount would be
designed, is of course the motion of the structure at the point of support.
The latter would be obtained by analysis of the response of the structure
to air blast or, in some cases, to ground shock. Having this support
motion, the equipment and its mounting would be analyzed using the
procedures of Sec. 2.6 or 6.2.

Probleras

7.1 A one-way reinforced concrete slab is subjected to side-on overpressure only.
The slab is fixed against rotation at both supports and has the following properties:
d = 6§ in. (total depth = 7.5 in.)
#s = 0.0 (for both positive and negative moment)
c;c = 5200 pai; Ty = 52,000 psi
E = 4 X 10° pai; span = 12 ft

If the peak overpressure p., is 10 psi and produced by a 0.2-MT weapon, what is the
maximum midspan deflection? Consider only flexural behavior.
Answer

Iy A= ]..7

ym = 0.54 in.
7.2 What would be the required thickness of the slab in Prob. 7.1 for a pesak over-
pressure of 50 psi and 4 = 3, all other data remaining the same?
7.3 A steel door is built up of 16WF96 sections, spaced at 20 in., with a light, non-
structural covering. The beams are simply supported on a span of 15 ft, and the
dynamic yield strength is 60,000 psi. If the door is face on to the blast of a 5-MT
weapon, and the peak overpressure is 50 pai, what would be the maximum midspan
deflection? The clearing distance S, is 20 ft, and the weight of the door is 200 1b/ft*
of surface, in addition to the weight of the steel sections given.
7.4 The building shown in Fig. 7.6 and designed in Sec. 7.3 is subjected to the blast
wave from a 10-MT weapon having a peak overpressure of 10 psi. Estimate the
maximum horizontal deflection of the frame, neglecting the vibration of the walls,
i.e., assuming the blast pressure on the wall surfaces to be transmitted to the frame
without modification.
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7.5 A reinforced concrete barrel arch has the same dimensions and properties as
those given for the slab in Prob. 7.1 (except apan). It has a radius of 10 ft, an internal
half angle {(4) of 60°, and hinged supports. If subjected to a blast with Pas = 20 psi
and Y = 0.5 MT, what would be the resulting value of u in the flexural mode?

7.6 Referring to Prob. 7.3, what would be the maximum elastic bending stress in
the door due to the horizontal ground motion resulting from the weapon apecified?

7.7 A machine weighs 5 tons and is supported by a heavy mat, which may be
agsumed to have the same motion as the undisturbed ground. Springs are to be
placed between the mat and the machine. The design criteria are that the vertical
acceleration of the machine should not exceed 4 and that the displacement, relative
to the mat should not exceed 5 in. The seismic velocity of the soil is 3000 fps, and
the design weapon is 20 MT at a range of 8000 ft. What values of spring stiffness
would satisfy these requirements?

Answer

k =< 5100 to 12,500 1b/in.

8

Beams Subjected
to Mouving Loads

8.1 Introduction

A particular class of problem which has long been of interest to engineers
involves the determination of the dynamic response of a beam or girder
resulting from the passage of a force or mass across the span. Examples
include the analysis of crane beams and of highway and railway bridges
under the effect of moving vehicles. Although solutions to some of these
problems have been available for some time, it is only in recent years that
numerical results in quantity have been attainable by the use of electronic
computation.

8.2 Constant Force with Constant Velocity

We consider first the relatively simple case of a constant force F moving
across the span of a beam at constant velocity v as indicated in Fig. 8.1.
In Sec. 4.3, it was found that the modal equation of motion {neglecting
damping) for a beam with a single coneentrated load is

A;-{n + wnzAn = M (8'1)
[ mign@)1t do

where ¢, is the modal-shape function for the nth mode, and cr is the
distanee from the end of the span to the force. In the present case ¢ is
315
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FIGURE 8.1 Constant force crossing
beam with constant veloeity.

a function of time and is equal to v, where ¢ is measured from the instant
at which the force entered the span. If the beam is stmply supported and
prismatic,

nrx

$a(x) = sin T

and Eq. (8.1) becomes, after substitution of ¢z = ut,

" 2F . nwvt
2 = — —_
A, + wald, ol B0 (8.2)
The modal solution is expressed by .
A, = A, (DLF), (8.3a)
2F
where Amt = m (83b)
and (DLF), is determined from the time function
£t = sin ™ = sin . (8.30)

It should now be apparent that the modal solution is the same as that for
a one-degree system subjected to a sinusoidal force, as discussed in See.
2.5. Therefore, by Eq. (2.34b), the dynamic load factor when the load is
on the span is

1 . Q. .
(DLF),, = ]m (Sln Qnt b ;; S1n Wnt)

where Q, = E;r—u

Inserting this expression for (DLF), and Eq. (8.3b) into Eq. (8.3a) and
combining modes according to the expression

N
y = E Andn(x)
n=1
we obtain the total solution for deflection:

2F & 1 Q nrx
=2 E B S _ Mm in ¥TE 8.4
] 7 pA o —qs (sm Q.t o~ sin w,‘t) sin — (8.4)
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If we assume viscous damping in each mode, the solution becomes

_2F %;" sin (nrz/l)
V7wl 4 Gt — 0.7 + 4.2,

((«:,2 — 2,2) gin Q¢

— 28,9, cos 2. -+ et [2,6,,9,. COB wyt

+ iﬁ (23"2 - ﬂuz - wnz) sin w"‘t]} (8'5)

where §./w, i8 the fraction of eritical damping in the nth mode. For
most beams of interest here, damping would be small and can often be
neglected, especially if one is interested only in the first few cycles of
response in any mode.

Since the ease under consideration is similar to a sinusoidal force applied
to 8 one-degree system, it might be concluded that resonance is an impor-
tant possibility. This is not so for two reasons: first, the loading exists
only for a limited number of cycles {e.g., the duration of the first-mode
loading is only one-half cyele}, and second, extremely high load veloeities
are required for resonance. ‘To illustrate the second point, consider a
beam with a 50-ft span and a typical fundamental period of 0.25 sec.
For resonance in the first mode, 2; must equal wi, and therefore

LA
I T
2l 2 X 50
= = ———m—— == h
or P= 035 400 fps, or 272 mp

This velocity would be highly improbable in most applications of the
theory. Even larger velocities would be required for resonance in higher
modes.

Equations (8.4) and (8.5) apply only while the force is on the span.
The free vibration oceurring thereafter may be determined simply by
computing the conditions at the instant the force leaves the span and
using these as initial conditions for the ensuing analysis.

As an example of the application of the above theory, we shall determine
the midspan deflection of a simple beam traversed by a constant force,
ignoring damping and including only the fundamental mode (higher
modes are of negligible importance). The parameters of the system are
given as

0.1 Ib-sec?/in.2 EI = 2 X 10 lb-in.?
40 ft v = 50 fps

m
l
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from which we compute

2 |ET
o =T =  Ea @7
_ o X%
= (@soy [ rum 19.2 rad/sec
_m _ w(50) _
Q = T~ 40 = 3.93 rad/sec

Substituting in Eq. (8.4), we obtain the midspan deflection at any time.
Yomijz = %0 (sin 3.93t — 0.204 sin 19.2t) 0<t<08 (8.6)

The first term in the parentheses is the forced, and the second is the free,
vibration.

The deflection given by Eq. (8.6) is plotted in Fig. 8.2 as a fraction of
maximum midspan static deflection. The abscissa may be considered to
be either time or the position of the load on the span. Plotted separately
is the forced part of the solution, which is very nearly equal to the static
“crawl” deflection, i.e., the plot of deflection versus load position for the
case in which the force moves very slowly. The residual vibration after
the force leaves the span would merely be a continuation of the free part
of Kq. (8.6). Since the midspan bending moment is very nearly propor-
tional to midspan deflection, the ordinate of Fig. 8.2 may also be regarded
a8 the ratio of dynamic to maximum static moments.

8.3 Pulsating Force with Constant Velocity

As an extension of the case given in the preceding section, we now consider
a force which moves across the beam span and, in addition, has a harmonic
variation in magnitude. This situation is illustrated in Fig. 8.3. Histor-
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‘FIGURE 8.3 Pulsating force crossing beam - *
with constant velocity. ]

ically, this problem has been of interest in connection with the vibration
of railway bridges due to the passage of steam locomotives.# The unbal-
anced weight on the driving wheels produces, in addition to the gravity
force, a harmonic alternating force.

Considering the applied force to be F; cos Q,f (which implies maximum
downward force at the time of entry to the span), we simply substitute
this expression for ¥ in Eq. (8.2) to obtain the modal equation of motion.

2F, cos Q¢ gin 2,1
ml

-A:n + anAn

i

% [sin (2, + 2. — sin (@ — @)Y (8.7)

where @, is as defined in Eq. (8.3¢). It is apparent that the solution may
be obtained by superimposing those corresponding to the two sine terms
on the right side of Eq. (8.7). Each of these is given by Eq. (8.4) if we
substitute for Q. the expression (2, + ©.) in one case and (@, — 2,) in
the other and note that, for the latter solution, the sign must be reversed.
In this way we obtain the solution for deflection due to the pulsating force,

3 F} H 1 . . Qp + ﬂn .
¥= mi lwnz _ (gﬂ + 0,2 [Slﬂ (QP + Qn)t ‘-\’n_ s wnt]
1 i 9‘9 — ﬂn . . NnTx
T i (OETRY [sm (2, — @)t — o 8in wnt]l sin —~ {8.8)

If, as in many cases, there is a constant moving gravity force in addition
to the pulsating force, the total solution may be obtained by adding Eqgs.
(8.4) and (8.8).

If the pulsating force had been F; sin Q,f, a solution could have been
obtained in a similar manner. This is given by

y = Fiv [cos (@ — D)t — 08 w,f

mi wa? — (Rp — Q)2
coB (2, + 2.)¢ — cos wul] . nwrz
T el - @ 0y ] n 69)

When a beam is subjected to a traveling pulsating force, resonance is a
distinct possibility and may be of importance. Neglecting damping and




320 Introduction to Structural Dynamics

considering only resonance with the fundamental mode, we see that 'the
maximum response occurs when €, = w1 and approximately at the time
when the load leaves the span, i.e., when ¢ = I/v and the maximum num-
ber of load cycles has occurred. At this time

. {
gin (Q, + Q.)t = sin (w;% + w) = —sin o
sin- (@, — 2,1 = sin (“’1% — r) = — sin “’13

and from Eq. (8.8), we obtain by substitution

_ Fl[ 2+'I'U/w1l-

2 — wv/wil
Y= i | 2o(xo/D) + (@o/1)

Y Sorro/T) — o/l

in X% sin o I
[5) 1 1!)

which may be simplified to

2F, . ®x . {
y = —— sin — sin w1 -
wImEY 3 v

{8.10a)
To obtain the maximum midspan deflection, we let z = 1/2 and take
sin (wid/v) = 1. Although the latter substitution is inconsistent, it pro-
vides a close estimate of the first peak deflection after the load has left
the span. Therefore the maximum midspan deflection in the resonant
condition i8 given by

2F,

(yz—lﬁ)mu = propm—— (810b)
which may also be written as
wil w1 2T,
(yx-lﬂ)mnx = y.:# = ’.flu'ﬂ—‘ = y.;—T— (8106)

where ¥, i8 the static deflection due to F; applied at midspan, and T. 18
the crossing time of the force. _ . ‘

Tf considerable damping is present, the free part of the vibration might
be essentially eliminated by the time the force reaches the end of the span.
If the free terms (that is, sin w.f) are.-removed from Eq. (8.8), it is found
that the maximum resonant deflection is very nearly one-half of that

iven by Eq. (8.10¢).
© For t?]r:le ?mf,mple beam of Sec. 8.2, it was computed that w, = 19:2
rad/sec and @ = 3.93 rad/sec. Thus, if the force had been pt}lsatmg in
resonance (@, = w;), the maximum deflection without damping would
have been w,/Q; = 19.2/3.92 = 4.9 times the static deflection due to the
same force.
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8.4 Beam Traversed by a Rolling Mass

Up to this point we have discussed only beams subjected to forees which
were either constant or varied in some specified manner while crossing the
span. In most practical cases the force is actually due to gravity acting
on & moving mass, and the presence of that mass affects the solution.
The analyses given previously are approximately correct for a moving
mass if thal, mass is small eompared with the beam itself.

To set up & more precise solution we refer to Fig. 8.4, where M, is the
mass of a vehicle or other object crossing the span. The force applied to

the beam at any instant is the gravity force minus the inertia foree due to
acceleration of the mass. - Therefore

Foree = M.g — Mj.

where §, is the acceleration of the beam at the mass location. It is
assumed that contact is always maintained, 1.e., that ¢, is also the accelera-
tion of the mass. The expression for force given above may be inserted
into Eq. (8.2) to provide the modal equation of motion,

2M, N
ml (7 — o) 8in—— (8.11)

ﬁu + wn!An =

‘We note that the mass aceeleration must include the effects of all N beam
modes, and therefore

N
Uo = Eﬂ,,sinﬁ’zlt

fi=1

Substituting the latter in Eq. (8.11) and rearranging, we obtain
N
. 2M, . Ly w . ¢ 2M.g . ¢
An+ (—ml sin Q—T)—)( E A, sin ﬂ'—?) ) + watd, = 22 H iy T (3.12)

ml 1
If we consider only the fundamental mode and let 4, = y,, the midspan
deflection, this becomes

n=]

e (1 + %ﬂ? sin? #-;—t) + wily, = 2M sin il (8.13a)

ml l
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or

p ! +M sin wt)+mlm1’ vt

] 5 Yo = M .g sin T (8.13b)
In Hq. (8.13b), the second term in the parentheses may be considered to
be an “effective’” value of the moving mass which varies with time (or
mass position), and M .9 may be considered to be a constant moving force.

A convenient rigorous solution for the problem formulated above has
not been found. However, Eqgs. (8.12) and (8.13) are in suitable form
for numerical analysis, and solutions to the problem may be easily obtained
by electronic computation.

8.5 Beam Vibration Due to Passage of Spnmé Masses

We now turn to the more complex case of a mass supported by a spring,
both of which cross the span at constant velocity. This is of practical
interest in connection with highway-bridge vibration, as discussed in the
next section. Such a system is shown in Fig. 8.5, where, for generality,
two masses are included, a sprung mass M., supported by a spring of
stiffness k, and an unsprung mass M. which is assumed to be always in
contact with the beam. The force applied to the beam may be expressed
by
Force = M,.(g — #o) + [k.(z — yo) + Mgl

where the first term is the same as given previously for unsprung masses,
and the term in brackets is the foree in the spring. Note that z is the
absolute deflection of M., and the term M,g is included because z is
meagsured from the neutral spring position.

Proceeding as before, we substitute the above expression for force into
Eq. (8.2) to obtain the modal equation of motion for the beam. If, at
the same time, we insert

. nwvl
Yo = Z A, s8in 5
n=1
N
eyt
Y = z n SII T
n=]1
I“"
lz
m, EF
»9}‘?{__,\_}__ ____________ jor
" FIGURE 8.5 Beam with sprung and un-
! sprung masees moving at constant
- velocity.
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multiply both sides by mi/2, and rearrange, the result is

l. .
?_;— An + ( ou S1IL n_‘ﬂ'lit) ( Z A sin nﬂt) + mlwn A

= [W,,, + k. (z - Z A, sin "%”‘)] sin ""';_"" (8.14)

A=1

where W., is the total weight Mg of both masses. Equation (8.14) indi-
cates a sel of equations, one for each normal mode of the beam, How-
ever, the complete system has one additional mode, since z represents an
additional degree of freedom. One more equation is required, and this is
the dynamic-equilibrium equation for the sprung mass, which may be

written
< t
M.i+ k. (z - Z A, sin 'i’-’ll) =0 (8.15)

n=1

Equations (8.14) and (8.15) provide a set of N + 1 equations, where N is
the number of beam modes considered, which may be solved by numerical
analysis for the motions of the beam and the sprung mass.

If we include only one beam mode, let 4, = ., the midspan beam
deflection, and introduce viseous-damping terms, the foregoing equations
may be written as

(%ml + Mnu sin? th) gc + 'nl;h Ye + CByc

= [Wct + ko( Ye sin ;’M):I gin 'lI'TUt (8.16)
M2+ k, ( Y. 8in ) + ¢, ( — ¢, 8in TTM) =0 (817)

where ¢z and ¢, are the damping coefficients for the bridge and sprung-
mass system, respectively. These equations represent an equivalent two-
degree system, which, for clarification, might be represented by the two
coupled one-degree systems shown in Fig. 8.6. Solution may be accom-

plished by a straightforward numerical procedure as for any two-degree
system.

8.6 Bridge Vibration Due to Moving Vehicles

The vibration of bridges due to moving traffic is important for two reasons.
First, the stresses are increased above those due to static-load application.
This is normally accounted for by the “impact” factor in design. The
second reason is that excessive vibration may be noticeable to persons on
the bridge. Although not related to safety, this may have the psycholog-
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ical effect of impairing public confidence in the structure. There have
been cages in which the latter phenomenon has been of considerable impor-
tance to highway officials.

Equations (8.16) and (8.17) may be used to investigate the vibration of
actual simple-span highway bridges resulting from the passage of a single
heavy vehicle. This implies the following assumptions:

1. The actual bridge, which consists of a floor system and several
stringers or girders, may be represented by a single beam of equivalent
rigidity.

2. Only the fundamental mode of the bridge beam need be considered.

3. The vehicle, although having two or more axles and & corresponding
number of springs and flexible tires, may be considered to be a one-degree
system.

4. The entire vehicle weight is applied to the bridge at the center of
vehicle mass, rather than at the actual wheels.

Assumption 1 produces little error if the bridge is relatively narrow (e.g.,
two lanes) and if the vehicle is positioned on the center line. Assumption
2 is permissible for most purposes since the higher modes contribute little
to the deflection or bending moment at midspan. With regard to assump-
tion 3, the vehicle actually has many degrees of freedom associated with
the individual springs and tires. However, the important vehicle motion
with respect to bridge vibration appears to be the mode in which all these
flexible elements act in phase. The acceptability of assumption 4 obvi-
ously depends upon the ratio of bridge span to vehicle-axle spacing. The
error is not serious if this ratio is greater than about 5.
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FIGURE 8.7 Midspan bridge deflections. Comparison of theory and sectual field
test. (Bigge, Suer, and Louw.4)

Comparisons have been made between the theory, as represented by
Eqs. (8.16) and (8.17), and experimental results obtained from laboratory
models and from actual bridge structures in the field.* One such com-
parison is shown in Fig. 8.7, where the ratio of dynamic to maximum
static midspan deflection is plotted against time (or vehicle position).
The field test and the theoretical analysis were for a two-axle heavy truck
with a velocity of 37 fps and an eight-stringer steel bridge of 88-ft span.
In the theoretical analysis, the spring constant for the vehicle and the
damping coefficients for both vehicle and bridge were given values which
had been obtained experimentally. In addition, the vertical displace-
ment and velocity of the vehicle mass at the point of entry into the span
had been measured during the field test, and these values were inserted as
initial conditions in the analysis. As may be observed in Fig. 8.7, the
agreement between experiment and theory iz very good.

Other studies have been made which include the effect of multiple axles
and transverse bridge flexibility and which extend the theory to continuous
spans.*™%® An extensive series of field tests were made in connection
with the AASHO Road Test at Ottawa, Il.4

As a result of the investigations referred to above, it may be concluded
that the primary causes of large bridge vibration are the initial “bounce’’
of the vehicle on its own springs as it enters the span (caused by roughness
on the approach) and surface irregularities on the bridge itself. The
former may be accounted for in the analysis by assigning initial values of
zand 2 at i = 0. The effect of surface roughness on the bridge may be
included in Eqs. (8.16) and (8.17) by adding to the term. [z — y, sin (zvt/I)]
& quantity giving the deviation of the bridge profile from a straight line in
terms of the position »t.

It is of interest to consider the effects of variations in the parameters of
the system on the maximum dynamic bridge deflection. The results pre-
sented below are for a vehicle having an initial amplitude of “bounce”
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defined by the parameter

zmowvz
g

o =

where 2.., is the initial amplitude, and w, is the vehicle natural frequency

given by ‘
o =\
v Mu

Since M, i8 normally small compared with M,,, the distinction has been
dropped, and it is assumed that the total vehicle mass M, is spring-sup-
ported. In arriving at these results the vehicle velocity has been varied
(with an upper limit of about 50 mph for most span lengths), and in addi-
tion the phase of the initial bounce has also been varied. The dynamic
deflections given below represent the most severe combination of these
two parameters and therefore are an upper bound. Damping in both
bridge and vehicle has been ignored beecause the former is of little impor-
tance and the latter could easily be counteracted by surface roughness on
the bridge deck. Bridge surface roughness has not been included directly
because, if within reasonable limits, it has the same general effect as the
initial bounce.

The most important parameters are the magnitude of initial vehicle
oscillation and the ratio of bridge to vehicle natural frequencies. The
effect of the latter is shown in Fig. 8.8a, where the ratio of maximum
dynamic to maximum static deflection is plotted against the frequency
ratio for a given value of @ and of the ratio of vehicle to bridge mass. It
may be observed that a substantial peak occurs when the frequency ratio
is unity. This is similar to the resonant condition for a system subjected
to sinusoidal load. It is not true resomance, however, since the peak
value is limited by the fact that there is a limited amount of energy in
the bouncing vehicle as it enters the span.

The effect of the magnitude of initial vehicle oseillation is shown in Fig.
8.8b, where the ratio of maximum deflection to that for & = 0.3 is plotted
versus the parameter a. It may be seen that the effect is almost linear.
The third parameter which is necessary in the analysis, 2M,/ml, has only
a secondary effect on the dynamic deflection and may often be ignored.

To demonstrate use of Fig. 8.8, suppose that the ratio of bridge to
vehicle natural frequency is 4 and that the initial vehicle oscillation is
such that a = 0.2. We read from plot a, 1.41, and from plot b, 0.93.
Therefore the expected maximum dynamic deflection at midspan is
1.41 X 0.93 = 1.31 times the static deflection due to the vehicle at mid-
span. The same factor when applied to the static bending moment
provides a good estimate of the maximum dynamic moment.
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FIGURE 8.8 Maximum dynamic bridge deflection. Effect of parameter varia-
tions. (Biggs, Suer, and Louw.1)

In current bridge-design practice (1964), the dynamic effects are
accounted for by increasing the static live load by an empirical “impact’’
factor which depends only upon span. This approach may be justified
because there are several major obstacles to the application of the theory
outlined above. First, a proper design value of « has not been established.
Second, the dynamic properties of future vehicles are not known, Third,
the theory has not been extended to include more than one vehicle simul-
taneously on the span, and even if it were, a proper design assumption in
this regard has not been established. All these are statistical problems,
and until the application of statistics and probability theory to structural
design has been more eompletely developed, the empirical approach will
have to suffice.®* Meanwhile, the theory presented above provides a
valuable insight into the general behavior of bridges under moving traffic.

Problems

8.1 A constant force crosses 8 simple heam with a constant velocity of 40 fps. The
beam has a span of 40 ft and a natural frequency of 30 rad/sec, and the force, if applied
statically at midspan, would cause a deflection of 0.25 in. Neglecting damping and
considering only the first mode, determine the maximum midspan deflection and the
amplitude of the residual vibration after the force has left the span.
Answer

0.27 in., 0.040 in.
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8.2 Repeat Prob. 8.1 for the case in which there is an additional force given by P
cos8 4xf, where P i3 one-quarter of the constant force and always located at the same
point.
8.2 An unsprung mass rolls acroas a simple beam with a constant velocity of 50 fps.
The beam has & span of 40 ft and a natural frequency of 20 rad/sec. The weight of
the rolling mass is one-half the total weight of the beam. Determine the maximum
midspan deflection, considering only the first mode and neglecting damping.
Answer

1.19 in.

8.4 Repest Prob. 8.3 for the case where the moving mass is supported on a spring
and the natural frequency of this spring-mass system is 9 rad/sec. When this mass
enters the span, the spring is elongated by an amount z = 1.2 in, (2 = ().

8.5 Estimate the upper bound (for all practical velocities of the mass and phasing
of the initial condition) for the deflection computed in Prob. 8.4. The variation in
the parameter 2M,/mi may be ignored.
Answer

1.37 in.

Appendix  Matrix Formulation
of Modal Analysis

This appendix contains an alternative derivation of the modal equations of motion
making use of matrix notation. The development is specifically for lumped-param-
eter systems and is exactly parallel to the derivation given in Chap. 3. It is assumed
that the reader is familiar with matrix algebra.1®

The following discussion contains enly brief deseriptions and explanations of the
steps in the derivations. The complete treatment of the subject in relation to the
physical phenomena is given in Chap. 3. The author has deliberately chosen not to
use matrix notation in the body of this text. The condensation of 2 set of equations
into one is of course a convenience, but it tends to obscure the true meaning of the
equations and to make derivations seem to be mere mathematical manipulation. The
computational methods given in the main text for obtaining numerical results are of
course not affected by the manner in which the problem is formulated.

Having mastered the basic concepts, the student will find it convenient to use matrix
shorthand when working with the equations for a multidegree system. For this pur-
pose the basic equations are restated below in matrix notation.

a. Normal Modes

The equations of motion for a multidegree lamped-mass system may be written as

Mo}t + [Kl{y} = (F(®)) (A.1)
where (M]p = a diagonal matrix containing masses of the system
{#}, 1y} = column matrices of accelerations and displacements, respectively
[K] = square stiffness matrix

{F{f)} = a column matrix of applied dynamic forces
It is important to note that, for linear structural problems, [K] is syminetric.
Equation (A.1) is the matrix form of Eq. (3.3).
If the system is vibrating in & normal mode, we may make the substitutions

fy] = las) sin wat {#} = ~wntlan} sin wad [P} =0
to obtain
—w:[MIplas} + [Kl{as} =0
or (K] — wa¥M15)(aa) =0 (A.2)

where {a.] is the column matrix, or vector, of the modal displacements for the nth
mode. Noting thet {a,.} cannot be zero and using Cramer’s rule, we write

K] — wn[M]p| =0 (A.3)

Thus we have a characteristic-value problem, and the roots of Eq. (A.3) are the charac-
teristic numbers, or eigenvalues, which are equal to the squares of the natural frequen-
cies of the modes. Note that Eqs. (A.2) and (A.3) correspond to Egs. (3.8) and (3.9)
in Chap. 3. For each root there is a characteristic vector solution {a.}, having an
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arbitrary magnitude and representing the characteristic shape of that mode. Numeri-
cal methods for the solution of Eq. (A.3) are discussed in Secs. 2.2 to 3.5.

b. Orthogonality

For any two roots corresponding to the nth and mth modes, we may write Eq.
(A.2) s
@nllM]plan] = [K]{a.} (A.4)
wn{Miplan] = [K]{an} (A.8)
If we postmultiply the transpose of (A.4) by lan}, we obtain
(@' [M]plax})™ fam} = ((K]{an})T (am]
or we? (an ) T[M ]G {an] = {2} T[K]T [Gm] (A.6)
Premultiplying (A.5) by [an]7, we write

wm{@n) T [M]p{an} = e} TIK} {am} (A.7)

It ie known that [M|p, = [M]%, as for any diagonal matrix, and also that [K] = (KT,
since [K]is symmetric. It is apparent that the right sides of Bqs. (A.6) and (A.7) are
equal, and therefore subtracting (A.7) from (A.6) yields

(wa? — wm? {an}T[M]ofam} = 0 (A.8)
Since Wn P Wy
{e.}T[M]pfam} = 0 (A9

which is the orthogonality condition and the same as Fq. (3.13a).

¢. Modal Equations

Since the modal displacements may be given any amplitude, it is now convenient
to replace {a.} by {#.] such that

(6.} TIMInigLt =1 (A.10)

The modal displacements {¢,} are evaluated so as to satisfy Eq. (A.10) and at the
same time keep the elements in the same proportion asthosein {a,}. The characteris-
tic vector is then said to be normalized. Note that Eq. (A.8) has not been violated
since, if n = M, we? — wp? = 0, and the remaining terms may be given any desired
value.

Equation (A.2) may now be written for the ath mode as

[KHe.l = onllM]ol4,}

Now we let [¢'] be a square matrix containing sll normalized characteristic vectors
such that the nth column is the set of characteristic displacements for the nth mode.
The last matrix equstion may then be written so as to include all modes.

(EN®'] = |M]pl#'llwalo {A.11)

where [w,?]p i8 a diagonal matrix of all characteristic numbers. We now premultiply
both sides of (A.11} by [{#']T to obtain

[®')"{K]i®'] = [@']7|M]o[® Hwa]p (A.12)
It may be shown that
[#]17{M][2'] = (I]o (A.18)
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where [I]p is the unit diagonal matrix. Equation (A.13) can be easily verified by
expangion and follows from the orthogonality condition and the fact that [#] has
been normalized. It therefore follows that Fq. (A.12) may be written ag

[#1TK]$] = [wa'lp (A.14)
Returning now to the equation of motion (A.1}, we let
(¥} = (@] (4} |
and (5} = @114} (4.15)

where A, is the modal amplitude. This merely states that the true modal displace-
ments equal the characteristic displacements times the modal amplitude determined
by the response calculations and, further, that the total displacements are linear
combinations of the modal values. If we now premultiply Eq. (A.1) by [#']T and
substitute Eqs. (A.15), we obtain

[ 17 [M1o[®@]{Aa} + [@TTK][]{An] = [T (F (5]
Finally, substituting for the left sides of Eqs. (A.13) and (A.14)‘ in the last provides
[As] + [wafln{4a) = [F]T{F()] (A.16)

which represents the modal equations of motion. These are of course uncoupled, and
one of the equations represented by this matrix equation may be written as

i
Aot outda = Y $LFu(0) (A.1T)

=1

where r = } — jidentifies the masses of the system. The final displacement obtained
by superimposing the modes is

{yell)] = [ 1{A(D)} (A.18)
= [#']{Anu(DLF).} (A.19)

where A,(2) is the solution of Eq. (A.17).
Equation (A.17) is exactly the same as Eq. (3.46), except that, in the latter, the

j
right side is in terms of ¢ rather than ¢’ and is divided by E M.¢t.. This is true

r=1

J
because ¢ is the normalized shape and Eq. (A.10) indicates that z M.t =1
r=1

Thus, in reality, the two equations are identical. Equation {3.46) is perhaps more
convenient to use since it is easier to evaluate the right-side denominator in that
equation than to normalize the shapes according to Eq. (A.10).

Equation (A.19) is of course equivalent to Eq. (3.49). A.({) or A, is different
by the two procedures, since ¢ and ¢’ are different, but the final result, y{(f), is identical.

d. Darnped Systems

If damping had been included in the foregoing development, the equations of
motion (A.1) would have been

Mlotyg} + [Kllyl + [clg} = (F@) (A.20)
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where [c] is the matrix of damping coefficients. This equation is the same as Eqg.
(3.53). If we add to Eqgs. {A.15)

fy} = @14,
and follow the same procedure thereafter, the modal equations of motion (A.16)
become
(Aa} 4 [waln[4n} + @@ {4a) = @ITIF(D)] (A.21)
In any one modal equation of motion the coefficient of 4., is equal to 2w.Cn, Where C,

is the ratio of actual to critical damping in the nth mode. Therefore the complete
set of damping coefficients is defined by

[®)7le][®] = [2w.Calp (A.22)

Equation (A.22) is equivalent to Eq. (3.54) and, when solved, provides all damping
coefficients in terms of the damping ratios C.. Procedures for accomplishing this are
discussed in Sec. 3.10.

e. Support Motion

As discussed in Secs. 2.6 and 6.2, solutions for support motion may be obtained if

[F{)] is replaced by —g,(f) {M}, where #,(£) is the prescribed support acceleration.
Thus the modal equation may be written as

{An} + [watlplAn} + RawaCalnfdn} = —#O@)TIM} {A.23)

This represents a set of equations any one of which has the form

i
An 4 @M + ZonCodo = —4i(8) ) 61 M, (A.24)

r=1

which is the same as Eq. {6.5), except that, in the latter, the characteristic shape has
not been normalized. Note that, in Eqgs. (A.23) and (A.24), A, is the relative motion
with respect to the support.

The participation factors for the modes (Sec. 6.2) are given by
(ry} = @17 {M} (A.25)

which corresponds to Eq. (6.6). Finally, the solution for relative displacement is
given by

{wel)] = [T ua()} (A.26)
where u, is relative displacement, and %.° is the response of a one-degree system having

a frequency of w,. The last equation is identical with Eq. (6.10), although ¢ and IV
are numerically different from the corresponding terms in Eq. (6.10).
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A

Alternating force, step force, 64
(See also Pulsating force)
Arches, design for blast effects, 207—
306, 308-309
Atomic weapons (see Nuclear weapons
effects)

B

Beams, 2, 88, 150-188

approximate analysis, 206-212

beam-girder system, 183188, 237-
242

boundary conditions, 152-158, 208

characteristic shapes, 152

continuous, 174-183

dynamic stresses, 165-169

elasto-plastic analysis, 72-76, 192
195, 201

effective spring constant, 204-205

flexibility coefficients, 104

forced vibration, 158-173, 180183

with moving force, 315-318

under moving mags, 321-323

nonprismatic, 170-173

reactions, dynamie, 217-219, 227,
230, 236-237

reinforced concrete, 217, 224-228

effective stiffness, 226

relative importance of modes, 162
165, 168, 183, 324

roof girder, design of, 287201

shear, 218, 227-228, 230

steel, 50, 72-76, 80, 229230, 289, 295

support motion, analysis for, 262—
263
Bilinear resistance function, 21, 69,
203, 231
{See also Elasto-plastic systems)

Index

-

Blast effects (see Nuclear weapons
effects)

Bridges, 319, 322-327 ‘

Building frames (see Frames, struc-
tural)

Buildings subjected to blast effects,
282-297

Buried structures, 308-309

c

Characteristic amplitude, 93
Characteristic functions, 161
Characteristic shapes, 88, 93, 127, 152,
250
continuous beams, 174-182
normalized, 119, 330
by Rayleigh method, 105-111, 170-
172
single-span beams, 152-158
by Stodola-Vianello method, 97-105,
127, 131
Characteristic values, 91, 329
Computers, electronie, 1-2, 195, 254
Coordinates, generalized, 112
Coupling, 87, 233, 237
Critical damping (see Damping, criti-
cal)

D

I’ Alembert’s principle, 4, 95
Damping, 17, 51-58, 331-332
beam with moving force, 317
coefficient, 17, 18
Coulomb, 56-58
critical, 17, 52, 64, 332
effect of, 19, 52, 55, 320, 326
logarithmie decrement, 54
in multidegree systems, 140-147, 332
337
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Damping, percent of critical, 18, 52,
141, 146-147
system, with sinusoidal force, 62-64
with support motion, 68
vigeous, 17, 51
Degrees of freedom, 3, 11, 85, 150
Design criteria, 224, 283, 288
Distributed mass systems, 150, 199, 216
Domes, design for blast effects, 297—
299, 306-309
Duectility ratio, 224
Ductility of structures, 21, 203-204
blast-resistant design, 283
earthquake design, 270
Dynamic equilibrium, 4, 12, 218, 250
of beam element, 151, 194
rotational equilibrium, 138, 152
Dynamic load factor, 39, 246, 251, 258
applied to modal analysis, 120, 316

E

Earthquake analysis, 245-273
response spectrum, 264265
significance of plastic behavior, 252~

255, 266-269

Earthquake design codes, 269273

Earthquake ground motion, 263-265

Eigenvalues, 91, 329

Elastic limit, 22, 23, 140, 222

Elasto-plastic systems, 20, 69-81, 201
analyzed for support motion, 253-255
beam-girder, 237242
beams, 192-195
charted maximum responses, 72-78
design of, 222-224, 227-228
multidegree, 137-140
permanent distortion of, 26, 255

Energy methods, inelastic response,

222224
Lagrange equation, 111-116, 118
Rayleigh method, 105-111

Equivalent mass, 2-3, 119, 202-203

for frames, 216, 235

F

Finite-difference methods, 192-195
(See alse Numerical integration)
Flexibility coefficients, 102-105
Floor systems, 183188, 237242
Forced vibration, 37, 40, 58, 158, 318
continuous beams, 180-183
damped, 54
Foundations, 136-138
Frames, structural, 10, 16, 26
analyzed for support motion, 250
257
approximate analysis, errors in,
206-297

designed for blast effects, 203297

earthquake analysis, 266269

earthquake design, 272-273

elasto-plastic analysis, 138-140,
253-255, 203297

flexible foundation, effect of, 136~
138

girder flexibility, effect of, 87, 130~
134 :

idealization of, 215-217

modal analysis of, 125-136

reinforced concrete, 297

stiffness and flexibility coefficients,
104

vertical loading, 233-237

Free vibration, 35, 58, 318
damped, 51

Frequency, natural (see Natural fre-

quency)

Frequency equation, 91, 153, 155, 157
continuous beams, 174-176, 178
two-degree system, 92

Friction, 56

Fundamental mode, 93

G

Ground motions (see Earthquake
ground motion; Nuclear weapons
effects}

gy

H

Harmonic motion, 36, 90, 152

I

Tdealized systems, 2-3, 195-205
beams, 206-212
frames, 10, 16, 215-217
slabs, 206-215

Impact, 323, 327

Impulse, 40, 223

Inelastic behavior (see Elasto-plastic

systerns)

Inertia forces, 4, 12
in beams, 218, 238
in multidegree systemns, 95, 103
work by, 105-106, 112

Initial conditions, 35, 36, 38, 51

K

Kinetic energy, 106, 113
in beams, 158, 185
due to impulse, 223
in modsl analysis, 116
in plates, 189

L

Lagrange equation, 111-116, 118
application, 114-116
to beam-girder system, 185-188
to beams, 158160
to slabs, 189-190
derivation, 111-113
Linear systems theory, 40-41
Load function, 3
combined, 220-221
idealized, 205-206
blast pressures, 285, 291, 204
arches and domes, 298-299, 301
for roof girder, 288
Logarithmic decrement, 54

Index 239
M

Machinery, rotating, 58
effect on building frame, 134
Magnification factor, 64
(See also Dynamic load factor)
Matrix methods, 329-332
Modal analysis, 116-125
beams, 158-170
moving loads, 315-322
frames, 125-138, 250-253
matrix formulation, 330332
slabs, 188-192
support motion, 247-253, 266—
269
Modal displacement, 118
Mode (see Normal modes)

N

Natural frequency, 7, 36-37, 208
arches, 300-301, 304
beams, continuous, 176-180
nonprismatie, 171
single-span, 152158, 167
damping, effect of, 52
direct determination, 89-93
domes, 306
by Rayleigh method, 105-111
slabs, 190, 208, 232, 292
by Stodola-Vianello method, 97-105,
127, 131
structural frames, 127-128, 132, 236
Natural peried, 7, 37, 219
(See also Natural frequency)
Nonlinear systems (see Elasto-plastic
gystems)
Normal modes, 88, 144, 151
equivalent one-degree system, 116,
119-121
fundamental, 93, 102, 105
matrix formulation, 329
orthogonality of, 95-97
participation factor, 108-109
analysis for support motion, 248,
251, 332
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Normalized shape, 119, 330
Nuclear weapons effects, 277-282
on arches and domes, 298299, 303
on belowground structures, 308
on buildings, 282-285, 201, 293
dynamic pressure, 278-279, 281, 283
ground shock, 309-313
overpressure, 278-279, 281
pressure duration, 279-280, 284
reflected pressure, 280, 284
shock front velocity, 280, 284
Numerical analysis, 1, 26, 138-140
for arches, 305-306
two-degree systems, 13-16, 240241
Numerical integration, 4-9, 14, 24, 254
beam-girder system, 240-242
damped systems, 19, 20
finite-difference methods, 30, 31
linear-acceleration method, 27-29
multidegree system, 142-143
Newmark g method, 30
time interval, 6, 8, 13, 29

O

One-degree system, 3, 85
elagtic responses, 42-51
elasto-plastic, 20-26, 60-81
nondimensional equations of motion,
78-89, 306
Orthogonality, 95-97, 101, 159
matrix formulation, 330
second orthogonality condition, 96—
97, 117

P

Period, natural {(see Natural period)
Permanent set, 26
Plates (see Slabs)
Pulsating force, beam-girder system,
183188
muitistory frame, 134-136
one-degree gystem, 58—65
with damping, 62
traversing beam, 318-320

R

Rayleigh method, 105-111
applied to nonprismatic beam, 170-
172
for higher modes, 108
Rebound, 22, 240
Recurrence formulas, 6, 27, 28, 30, 31
Reinforced concrete beams {see Beams,
reinforced concrete)
Residual vibration, 25, 71, 318
Resistance function, 21-23, 203204
Resonance, 58, 61, 64
limited cycle, 61, 62
due to moving loads, 317, 319-320,
326
Rigid frames (see Frames, structural)
Rise time, 49, 80

8

Schmidt orthogonalization procedure,
108-111
Seismic coefficient, 270
Shear (see Beams, shear)
Shear buildings, 125, 138, 266
Shear walls, 297 :
Slabs, 188-192
approximate analysis, 206-215
design of, 230233, 284287, 201-293
two-way and flat, 212-215-
Spectral velocity, 247
Spectrum, for earthquake analysis,
264-265, 271
for ground shock due to nuclear ex-
plosions, 311
response, 257-263
Spectrum analysis, 262--263, 2656-269,
312-313
Spring constant, 2, 10, 16
effective value for fixed beams and
slabs, 204-205, 230231, 287
(See alzo Stiffness coefficients)
Steady-state response, 60, 63, 134, 260
Steel beams (see Beams, steel)
Steel frames (see Frames, structural}

Stiffness coefficients, 89
comparecl with flexibility coefficients,
101-105
frames, 127, 130, 250
Stodola-Vianello procedure, 97-101,
127, 131
compared with Rayleigh method,
107, 111
stiffness and flexibility methods,
101-105
Strain energy, 106, 112, 185, 180
Strength of materials, dynamie, 225
Btresses, dynamic, in beams, 51, 165-
169, 2290-230
due to support motion, 163
in frames, 128-130
in multidegree systems, 124-125
in glabs, 101-192
Support flexibility, 183
Support motion, 6668, 238, 312
analysis of multidegree systems for,
246-256, 332
response spectra, 257263
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Three-moment equation, 176
Transformation factors, 202-217
Transient response, 60
Trusses, 217 :
Two-degree systems, 11-17, 85
analyzed for support motion, 250—
255
beam-girder combination, 183-188
237-242
bridge-vehicle combination, 323
characteristic shapes, 93, 94, 114
117, 144
damping, 144-145
frequency equation, 92
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Vehicles, bridge vibration due to, 322
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